## US 422 RIVER CROSSING TRAFFIC STUDY

February 2011

# REGIONAL PLANNING COMMISSION 

190 N Independence Mall West
ACP Building, $8^{\text {th }}$ Floor
Philadelphia, PA 19106-1520
Phone: 215-592-1800
Fax: 215-592-9125
Website: waw. dvrpc.org

## US 422 RIVER CROSSING TRAFFIC STUDY

February 2011

The Delaware Valley Regional Planning Commission is dedicated to uniting the region's elected officials, planning professionals, and the public with a common vision of making a great region even greater. Shaping the way we live, work, and play, DVRPC builds consensus on improving transportation, promoting smart growth, protecting the environment, and enhancing the economy. We serve a diverse region of nine counties: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer in New Jersey. DVRPC is the federally designated Metropolitan Planning Organization for the Greater Philadelphia Region leading the way to a better future.

The symbol in our logo is adapted from the official DVRPC seal and is designed as a stylized image of the Delaware Valley. The outer ring symbolizes the region as a whole while the diagonal bar signifies the Delaware River. The two adjoining crescents represent the Commonwealth of Pennsylvania and the State of New Jersey.

DVRPC is funded by a variety of funding sources, including federal grants from the U.S. Department of Transportation's Federal Highway Administration (FHWA) and Federal Transit Administration (FTA), the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC's state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies.

DVRPC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. DVRPC's website (www.dvrpc.org) may be translated into multiple languages. Publications and other public documents can be made available in alternative languages and formats, if requested. For more information, please call (215) 238-2871.

## Table of Contents

Executive Summary ..... 1
C H A P TER 1
Introduction ..... 3
C H A P TER 2
Characteristics of the Study Area ..... 5

- Current Average Daily Traffic Volumes ..... 5
- Current AM and PM Peak Hour Traffic Volumes ..... 8
C H A P T E R 3
Travel Forecasting Procedures ..... 11
- Improvement Alternatives ..... 11
- Socioeconomic Projections ..... 12
- US 422 Study Area Forecasts ..... 15
- DVRPC Travel Simulation Process ..... 15
- Highway Traffic Assignment Validation ..... 20
CHAPTER 4
Projected Traffic Volumes ..... 23
- Daily Traffic Forecasts. ..... 23
- Scenario 1 ..... 23
- Scenarios 2 and 3 ..... 25
- Peak Hour Traffic Forecasts ..... 32
CHAPTER 5
Conclusions ..... 33
Figures and Tables
Figure 1. US 422 River Crossing Study Area. ..... 6
Figure 2. Current Average Daily Traffic Volumes ..... 7
Figure 3. Current AM/PM Peak Hour Traffic Volumes ..... 9
Figure 4. Scenario 2 Improvements ..... 13
Figure 5. Scenario 3 Improvements ..... 14
Figure 6. DVRPC Travel Demand Forecasting Process ..... 18
Figure 7. Current, 2015, and 2035 Scenario 1 Average Daily Traffic Volumes ..... 24
Figure 8. 2015 Scenarios 1, 2, and 3 Average Daily Traffic Volumes ..... 30
Figure 9. 2035 Scenarios 1, 2, and 3 Average Daily Traffic Volumes ..... 31
Figure 10. 2015 AM/PM Peak Hour Traffic Forecasts for Scenario 1 ..... A-3
Figure 11. 2015 AM/PM Peak Hour Traffic Forecasts for Scenario 2 ..... A-4
Figure 12. 2015 AM/PM Peak Hour Traffic Forecasts for Scenario 3 ..... A-5
Figure 13. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 1 ..... A-6
Figure 14. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 2 ..... A-7
Figure 15. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 3 ..... A-8
Table 1. US 422 River Crossing Study Area Population and Employment Forecasts ..... 16
Table 2. Summary of Error in the Assigned Daily Traffic Volumes ..... 21
Table 3. Current and 2015 Average Daily Traffic Volumes ..... 26
Table 4. Current and 2035 Average Daily Traffic Volumes ..... 28
Appendix
2015 and 2035 AM/PM Peak Hour Traffic Forecasts. ..... A-1


## Executive Summary

The US 422 River Crossing Traffic Study provides daily and peak hour traffic forecasts to support planning and design efforts along the limited-access US 422 Expressway in the King of Prussia area. This portion of the Expressway, which was constructed in the 1980s, is the most heavily-traveled portion of US 422. Daily traffic volumes range from over 60,000 to nearly 100,000 vehicles per day between the PA 29 interchange in Upper Providence Township and US 202 along the Chester and Montgomery county line.

This area of US 422 experiences extensive, recurring congestion and significant delay during both the morning and afternoon peak periods, impacting local commuters, regional traffic, and visitors to the nearby Valley Forge National Historical Park. In addition to the capacity constraints, there are several operational deficiencies in the corridor. These include short weaving areas, limited storage capacity, and inadequate acceleration lanes. Furthermore, there are several aging bridges in the corridor, including the US 422 bridge over the Schuylkill River, that require rehabilitation or replacement.

The Pennsylvania Department of Transportation (PennDOT), has undertaken an extensive planning and engineering design effort to address these issues and to also provide a "gateway" into Valley Forge Park that would allow a buffer between Park visitors and commuters along the adjacent highway corridor. The culmination of this effort is two new alternative roadway configurations that address the transportation needs of the corridor, but at a reduced cost compared to earlier proposals.

The Delaware Valley Regional Planning Commission (DVRPC) was asked to provide traffic forecasts throughout the US 422 corridor under the anticipated opening year (2015) and horizon year (2035) conditions for the new alternatives. Those forecasts are presented in this report. They include average daily traffic volumes as well as AM and PM peak hour volumes for US 422 mainline, ramps, and selected parallel and crossing facilities in the study area. The forecasts incorporate the most recent planning assumptions from DVRPC's 2035 Long-Range Plan and the latest development proposals in the area.

## Introduction

Within southeastern Pennsylvania, the limited-access US 422 Expressway extends from just west of Pottstown to King of Prussia, where it provides connections to the Pennsylvania Turnpike (I-76 and I-276), the Schuylkill Expressway (I-76) and the US 202 Expressway. The eastern end of the Expressway, which was constructed in the 1980s, is the most heavily/traveled portion of US 422. Daily traffic volumes range from over 60,000 to nearly 100,000 vehicles per day between the PA 29 interchange in Upper Providence Township and US 202 along the Chester and Montgomery county line.

This area of US 422 experiences extensive, recurring congestion and significant delay during both the morning and afternoon peak periods, impacting local commuters, regional traffic, and visitors to the Valley Forge National Historical Park. In addition to the capacity constraints, there are several operational deficiencies, such as short weaving areas, limited storage capacity, and inadequate acceleration lanes. Furthermore, there are several aging bridges in the corridor, including the US 422 bridge over the Schuylkill River, that require rehabilitation or replacement.

The Pennsylvania Department of Transportation (PennDOT) has undertaken an extensive planning and engineering design effort to address these issues and to also provide a "gateway" into Valley Forge National Historical Park that would allow a buffer between Park visitors and commuters along the adjacent highway corridor. The culmination of this effort is two alternative roadway configurations to address the transportation needs of the corridor at a reduced cost. This project has been dubbed the US 422 River Crossing Traffic Study.

The Delaware Valley Regional Planning Commission (DVRPC) was asked to provide traffic forecasts throughout the corridor under the anticipated opening year (2015) and horizon year (2035) conditions. Those forecasts are presented in this report. They include average daily traffic volumes as well as AM and PM peak hour volumes for US 422 mainline, ramps, and selected parallel and crossing facilities in the study area. The forecasts incorporate the most recent planning assumptions from DVRPC's 2035 LongRange Plan and the latest development proposals in the area.

Chapter II of this report documents the existing conditions of the corridor, including current traffic volumes. Chapter III discusses the improvement alternatives under consideration and explains the travel forecasting methodology and DVRPC's travel demand model. Chapter IV presents and analyzes the traffic forecasts in the study area. Conclusions are discussed in Chapter V.

DVRPC uses state of the practice methods to determine the effect of various improvements on traveler behavior and system function. These include highway volumes, travel times, and modal splits of various alternatives. Alternative selection is a complex task including these and many other factors. This report does not endorse or recommend any specific alternative or project. Only projects that are included in DVRPC's Transportation Improvement Program (TIP) or Long-Range Plan are officially endorsed by DVRPC.

## Characteristics of the Study Area

For the purposes of developing traffic forecasts, the greater study area of the US 422 River Crossing traffic study is defined to include the Montgomery County municipalities of Lower Providence, Upper Merion, Upper Providence, and West Norriton townships and Schuylkill and Tredyffrin townships in Chester County. The study area, which is shown in Figure 1, is approximately bisected by US 422.

From the western edge of the study area to Trooper Road, US 422 is a four-lane, divided expressway. Between Trooper Road and PA 23, US 422 has two eastbound lanes; a third westbound lane was added in January 2009. US 422 continues as a four-lane roadway until just before its terminus at US 202, where it has a six-lane cross-section.

Within the study area, access to and from US 422 is provided by interchanges with Phoenixville-Collegeville Road (PA 29), Egypt Road, Trooper Road (PA 363), Port Kennedy/Valley Forge Road (PA 23), 1st Avenue, and US 202. The Trooper Road interchange is a partial interchange that provides only an on-ramp to US 422 eastbound and a off-ramp from US 422 westbound. The 1st Avenue interchange serves only eastbound off- and on-ramps. This traffic study is primarily focused on the US 422 corridor between Egypt Road and US 202.

The US 422/PA 23 interchange and adjacent roadways are congested in both the morning and afternoon peak periods. Delays on US 422 regularly exceed 20 minutes, and sometimes approach 40 minutes. In addition to high traffic volumes on US 422 that exceed the capacity of the roadway, several other problems also contribute to the congestion and resulting delay in the study area. These include inadequate acceleration lane lengths, US 422 eastbound constraints at the ramp terminus with PA 23, limited storage capacity between the PA 23 signalized intersections with North Gulph Road and the US 422 eastbound ramps, and the weave condition on PA 23 eastbound between the US 422 westbound off-ramp and Moore Road.

The current congestion along the US 422 corridor causes some traffic to avoid this regional freeway in the peak periods and divert to local roadways, including those through Valley Forge National Historical Park.

## Current Average Daily Traffic Volumes

Figure 2 displays the current daily traffic volumes for US 422 and significant parallel and intersecting roadways within the study area. For this analysis, the "current year" is defined as 2009. Traffic volumes along US 422 and the PA Turnpike were collected using permanent sensors installed and maintained by Traffic.com. Traffic counts at other locations, including the US 422 interchange ramps, were collected by DVRPC

Figure 2. Current Average Daily Traffic Volumes

using pneumatic tube traffic recorders. All counted volumes were factored to represent average annual daily traffic (AADT) volumes indicative of 2009.

Daily traffic volumes on US 422 between points west of its interchange with Egypt Road and its terminus at US 202 range from 63,100 to 95,600 vehicles per day (vpd). By far, the highest volume occurs on the Schuylkill River Bridge. West of the Trooper Road interchange, US 422 volumes are between 63,100 and 64,800 vpd; east of the PA 23 interchange, they range from 81,500 to $82,900 \mathrm{vpd}$.

Individual ramp volumes range from 2,900 to $26,100 \mathrm{vpd}$. The highest ramp volumes occur on the US 422 eastbound ramp to US 202 northbound ( $26,000 \mathrm{vpd}$ ) and the US 202 southbound ramp to US 422 westbound ( $25,400 \mathrm{vpd}$ ). The partial interchange at Trooper Road also serves very high traffic volumes: 14,600 vpd on the on-ramp to US 422 eastbound and 16,100 vpd on the off-ramp from US 422 westbound. Other highvolume ramps, serving 6,000 to 7,600 vpd, include all four Egypt Road interchange ramps and two of the ramps at the US 422 and PA 23 interchange.

All of the area facilities that have an interchange with US 422 also serve high traffic volumes. Volumes on Egypt Road range from 11,500 to 23,400 vpd; Trooper Road volumes are between 21,500 and 33,700 vpd. Traffic volumes on PA 23 range from 13,600 to 20,900 vpd, while 1st Avenue serves 15,100 vpd just east of US 422.

No facilities in the immediate study area are truly parallel to US 422 for any significant distance. Those that can provide an alternative to US 422 include North Gulph Road, PA 252, and portions of PA 23. North Gulph Road serves 16,800 to $27,600 \mathrm{vpd}$, PA 252 carries between 6,300 and $10,700 \mathrm{vpd}$, and the section of PA 23 between County Line Drive and Outer Line Drive in Valley Forge Park carries 14,500 vpd.

## Current AM and PM Peak Hour Traffic Volumes

The AM and PM peak hour traffic volumes in the study area were also collected and tabulated for current conditions in 2009. These volumes are shown in Figure 3. Peak hour volumes are provided for the US 422 mainline, its ramps, as well as turning movements at selected intersections. In the figure, the AM peak hour volume is shown before the slash and the PM peak hour volume is shown after the slash.

Along US 422 in the study area, traffic volumes during the AM peak hour are heavier in the eastbound direction. During the PM peak hour, they are heavier in the westbound direction. During both the AM and PM peak hours, the highest hourly volumes on US 422 occur at the Trooper Road and PA 23 interchanges.

During the AM peak hour, eastbound US 422 volumes vary from 2,930 to 4,780 vehicles per hour (vph). The 2,930 volume occurs just west of Egypt Road. Eastbound AM peak hour volumes increase at Egypt Road, and again at Trooper Road. They begin to decline at the PA 23 interchange, and decline again at the 1st Avenue interchange.

In the westbound direction, the AM volumes range from 1,850 to $3,320 \mathrm{vph}$. In this direction, the highest volumes occur between US 202 and PA 23. They decrease at the PA 23, Trooper Road, and Egypt Road interchanges, with the lowest volumes occurring west of Egypt Road.

Figure 3. Current AM/PM Peak Hour Traffic Volumes


The peak direction of travel is reversed during the PM peak hour. At this time, eastbound US 422 volumes are between 1,860 and 3,450 vph. As was the case during the AM peak, the volumes increase at Egypt Road and Trooper Road, and then decline at the PA 23 interchange. During the PM peak hour, however, eastbound US 422 volumes increase at 1st Avenue.

In the westbound direction, the PM peak hour volumes range from 3,650 to $5,410 \mathrm{vph}$. While the Schuylkill River Bridge, between PA 23 and Trooper Road, carries 4,884 vph, all other locations along US 422 westbound serve between 3,650 and 3,800 vehicles during the PM peak hour.

## Travel Forecasting Procedures

DVRPC's travel simulation models are used to forecast future travel patterns. These models utilize a system of traffic zones that follow Census boundaries and rely on demographic and employment data, land use, and transportation network characteristics to simulate trip making patterns throughout the region.

Traffic forecasts are prepared and evaluated for the years 2015 and 2035 under three different highway network scenarios: a No-Build alternative (Scenario 1) and two Build alternatives (Scenarios 2 and 3). For each of these alternatives, DVRPC's travel simulation model is modified to reflect the alternative under consideration and is used to prepare travel forecasts representative of that scenario. The No-Build scenario provides a useful future-year reference against which any impacts associated with the build alternatives may be compared and quantified.

## Improvement Alternatives

The No-Build scenario does not include any changes to US 422. This alternative does, however, include improvements to other regional facilities that are included in DVRPC's Transportation Improvement Program (TIP) and Long-Range Plan, and may have an impact on US 422 traffic volumes once they are built. These TIP and Plan projects include several improvements to the Pennsylvania Turnpike, US 202, and other facilities.

The Turnpike improvements include widening to three lanes by direction between the Downingtown and Valley Forge interchanges, the Mid-County (I-476) and Lansdale interchanges, and the Bensalem and Delaware River interchanges and constructing new interchanges at PA 29 in Chester County, Norristown's Lafayette Street in Montgomery County, and I-95 and Street Road in Bucks County.

US 202 improvements include widening to three lanes by direction between the Delaware State line and Matlack Street in Delaware County and between US 30 and Swedesford Road in Chester County, widening to two lanes by direction between Johnson Highway and PA 63 in Montgomery County, and constructing a new parkway between PA 63 and PA 611 in Montgomery and Bucks counties.

Other TIP and Plan projects include widening County Line Road, construction of the French Creek Parkway, reconstruction of the US 30 Coatesville-Downingtown Bypass, construction of the PA 309 connector, and several closed-loop traffic signal systems.

Both Build scenarios also include these TIP and Plan projects. Scenario 2 includes widening US 422 from four to six lanes from a point 2,500 feet east of the PA Turnpike to a point 8,200 feet west of the PA 363 interchange, replacing the US 422 Schuylkill River bridge to accommodate six through lanes and two auxiliary lanes between the PA 23
and PA 363 interchanges, widening the US 422 eastbound off-ramp to 1st Avenue to two lanes, replacing the US 422 eastbound off-ramp to PA 23 with a new fly-over ramp, relocating North Gulph Road/PA 23 toward the east in the vicinity of the Valley Forge Park entrance, removing the PA 23 on-ramp to US 422 eastbound, widening North Gulph Road from Freedom Drive to the US 422 overpass, widening PA 23 from US 422 to a point 1,000 feet east of Moore Road, widening the PA 363 on-ramp to US 422 eastbound, constructing a new on-ramp from PA 363 to US 422 westbound, and constructing a new off-ramp from US 422 eastbound to PA 363.

Scenario 3 is similar to Scenario 2 except that it does not include the North Gulph Road/PA 23 relocation at Valley Forge Park or the removal of the PA 23 on-ramp to US 422 eastbound. The improvements associated with Scenario 2 and Scenario 3 are shown in Figures 4 and 5, respectively.

## Socioeconomic Projections

DVRPC's long-range population and employment forecasts are revised periodically to reflect changing market trends, development patterns, local and national economic conditions, and available data. The completed forecasts reflect all reasonably known current information and the best professional judgment of predicted future conditions. The revised forecasts adopted by the DVRPC Board in February 2005 are an update to municipal forecasts that were last completed in 2000.

DVRPC uses a multi-step, multi-source methodology to produce its forecasts at the county level. County forecasts serve as control totals for municipal forecasts, which are disaggregated from county totals. Municipal forecasts are based on an analysis of historical data trends adjusted to account for infrastructure availability, environmental constraints to development, local zoning policy, and development proposals. Municipal population forecasts are constrained using density ceilings and floors. County and, where necessary, municipal input is used throughout the process to derive the most likely population forecasts for all geographic levels.

## Population Forecasting

Population forecasting at the regional level involves review and analysis of six major components: births, deaths, domestic in-migration, domestic out-migration, international immigration, and changes in group quarters populations (e.g., dormitories, military barracks, prisons, and nursing homes). DVRPC uses both the cohort survival concept to age individuals from one age group to the next, and a modified Markov transition probability model based on the most recent U.S. Census and the U.S. Census' recent Current Population Survey (CPS) research to determine the flow of individuals between the Delaware Valley and areas outside the region. For movement within the region, Census and IRS migration data, coupled with CPS data, are used to determine migration rates between counties. DVRPC relies on county planning offices to provide information on any known, expected, or forecasted changes in group quarters populations. These major population components are then aggregated and the resulting population forecasts are reviewed by member governments for final adjustments based on local knowledge.

Figure 4. Scenario 2 Improvements

odvrpc
PLANNING COMMISSION April 2010

Figure 5. Scenario 3 Improvements

$\begin{array}{lllll}0 & 500 & 1,000 & 1,500 & 2,000 \text { Feet }\end{array}$

## Employment Forecasting

Employment is influenced by local, national, and global political and socioeconomic factors. The U.S. Census Bureau provides the most reasonable and consistent time series data on county employment by sector, and serves as DVRPC's primary data source for employment forecasting. Employment sectors include mining, agriculture, construction, manufacturing, transportation, wholesale, retail, finance/insurance, service, government, and military. Other supplemental sources of data include the Bureau of Economic Analysis, the Bureau of Labor Statistics, Occupational Privilege tax data, and other public and private sector forecasts. As in the population forecasts, county-level total employment is used as a control total for sector distribution and municipal level forecasts. Forecasts are then reviewed by member counties for final adjustments based on local knowledge.

## US 422 Study Area Forecasts

As part of the US 422 River Crossing Traffic Study, DVRPC staff reviewed its most recent current population and employment estimates, its long-range population and employment forecasts, and all proposed land use developments in the study area. Based on this review, DVRPC developed 2015 and 2035 municipal-level population and employment forecasts for use as inputs to the traffic simulation models. Table 1 summarizes the population and employment forecasts used in the study.

Between 2010 and 2035, the total population in the US 422 River Crossing Traffic Study area is projected to increase by 21,718 residents to 148,837 . This represents an increase of just over 17 percent from the 2010 value of 127,119. Upper Providence and Schuylkill townships have the greatest relative increase in population at 31.3 and 29.3 percent, respectively, while Upper Providence and Lower Providence townships have the greatest absolute increases at 6,184 and 4,525 new residents, respectively. All study area municipalities are expected to add more than 2,000 new residents between 2010 and 2035.

The study area will also add over 27,000 new jobs between 2010 and 2035, an increase of 21.3 percent. The highest absolute growth occurs in Upper Merion and Upper Providence townships, with 9,545 and 8.962 new jobs, respectively. Together, these two townships are responsible for just over two-thirds of the study area's employment growth during this time period.

Most of the study area's growth in both population and employment is forecast to occur after 2015. From 2010 to 2015 , both the population and employment in the study area are forecast to grow by less than five percent.

## DVRPC Travel Simulation Process

The focusing process increases the accuracy of the travel forecasts within the detailed study area. At the same time, all existing and proposed highways throughout the region, and their impact on both regional and interregional travel patterns, become an integral part of the simulation process.
Table 1. US 422 River Crossing Study Area Population and Employment Forecasts

|  | Population |  |  |  |  |  | Employment |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Study Area Municipalities | 2005 | 2010 | 2015 | 2035 | $\begin{gathered} 2010-203 \\ \text { Abs. } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Growth } \\ & \text { Pct. } \\ & \hline \end{aligned}$ | 2005 | 2010 | 2015 | 2035 | $\begin{array}{r} \hline 2010-203 \\ \text { Abs. } \\ \hline \end{array}$ | $\begin{aligned} & \text { irowth } \\ & \text { Pct. } \end{aligned}$ |
| Lower Providence Township | 24,899 | 25,975 | 26,991 | 30,500 | 4,525 | 17.4\% | 11,021 | 11,423 | 11,804 | 13,123 | 1,700 | 14.9\% |
| Upper Merion Township | 27,400 | 27,764 | 28,109 | 30,479 | 2,715 | 9.8\% | 54,143 | 55,653 | 57,281 | 65,198 | 9,545 | 17.2\% |
| Upper Providence Township | 18,391 | 19,772 | 21,449 | 25,956 | 6,184 | 31.3\% | 9,922 | 11,454 | 14,203 | 20,416 | 8,962 | 78.2\% |
| West Norriton Township | 14,771 | 15,886 | 17,130 | 18,512 | 2,626 | 16.5\% | 7,481 | 7,647 | 7,803 | 9,339 | 1,692 | 22.1\% |
| Montgomery Co. Subtotal | 85,461 | 89,397 | 93,679 | 105,447 | 16,050 | 18.0\% | 82,567 | 86,177 | 91,091 | 108,076 | 21,899 | 25.4\% |
| Schuylkill Township | 7,368 | 8,208 | 8,748 | 10,612 | 2,404 | 29.3\% | 2,619 | 2,676 | 2,729 | 2,912 | 236 | 8.8\% |
| Tredyffrin Township | 29,074 | 29,514 | 30,265 | 32,778 | 3,264 | 11.1\% | 37,578 | 38,660 | 39,826 | 43,728 | 5,068 | 13.1\% |
| Chester Co. Subtotal | 36,442 | 37,722 | 39,013 | 43,390 | 5,668 | 15.0\% | 40,197 | 41,336 | 42,555 | 46,640 | 5,304 | 12.8\% |
| Study Area Totals | 121,903 | 127,119 | 132,692 | 148,837 | 21,718 | 17.1\% | 122,764 | 127,513 | 133,646 | 154,716 | 27,203 | 21.3\% |

DVRPC's travel models follow the traditional steps of trip generation, trip distribution, modal split, and traffic assignment. However, an iterative feedback loop is employed from traffic assignment to the trip distribution step. The feedback loop ensures that the congestion levels used by the models when determining trip origins and destinations are equivalent to those that result from the traffic assignment step. Additionally, the iterative model structure allows trip making patterns to change in response to changes in traffic patterns, congestion levels, and improvements to the transportation system.

The DVRPC travel simulation process uses the Evans algorithm to iterate the model. Evans re-executes the trip distribution and modal split models based on updated highway speeds after each iteration of highway assignment, and assigns a weight to each iteration. This weight is then used to prepare a convex combination of the link volumes and trip tables for the current iteration and a running weighted average of the previous iterations. This algorithm converges rapidly to the equilibrium solution on highway travel speeds and congestion levels. About seven iterations are required for the process to converge to the equilibrium state for study area travel patterns.

The DVRPC travel simulation models are disaggregated into separate peak, midday, and evening time periods. This disaggregation begins in trip generation, where factors are used to separate daily trips into peak, midday, and evening travel. The enhanced process then utilizes completely separate model chains for peak, midday, and evening travel simulation runs. Time-of-day sensitive inputs to the models, such as highway capacities and transit service levels, are disaggregated to be reflective of time-periodspecific conditions. Capacity factors are used to allocate daily highway capacity to each time period. Separate transit networks are used to represent the difference in transit service over the course of a day.

The enhanced model is disaggregated into separate model chains for the peak (combined AM and PM), midday (the period between the AM and PM peaks), and evening (the remainder of the day) periods for the trip distribution, modal split, and travel assignment phases of the process. The peak period is defined as 7:00 AM to 9:00 AM and 3:00 PM to 6:00 PM. Peak period and midday travel are based on a series of factors that determine the percentage of daily trips that occur during those periods. Evening travel is then defined as the residual after peak and midday travel are removed from daily travel. External-local productions at the nine-county cordon stations are disaggregated into peak, midday, and evening components using percentages derived from the temporal distribution of traffic counts taken at each cordon station.

Figure 6 provides a flow chart of the travel demand forecasting process. The first step in the process involves generating the number of trips that are produced by and destined for each traffic zone and cordon station throughout the nine-county region.

## Trip Generation

Both internal trips (those made within the DVRPC region) and external trips (those that cross the boundary of the region) must be considered in the simulation of regional travel. For the simulation of travel demand, internal trip generation is based on zonal forecasts of population and employment, whereas external trips are extrapolated from cordon line traffic counts and other sources. The latter also includes trips that pass through the Delaware Valley region. Estimates of internal trip productions and attractions by zone

Figure 6. DVRPC Travel Demand Forecasting Process

odvrpc
PLANNING COMmISSION
are established for each trip purpose on the basis of trip rates applied to the zonal estimates of demographic and employment data. Trip purposes include work and nonwork trips, light and heavy truck trips, and taxi trips. This part of the DVRPC model is not iterated on highway travel speed. Rather, estimates of daily trip making by traffic zone are calculated and then disaggregated into peak, midday, and evening time periods.

## Evans Iterations

The iterative portion of the Evans forecasting process involves updating the highway network restrained link travel speeds, rebuilding the minimum time paths through the network, and skimming the interzonal travel time for the minimum paths. Then the trip distribution, modal split, and highway assignment models are executed in sequence for each pass through the model chain. After convergence is reached, the transit trip tables for each iteration are weighted together and the weighted average table is assigned to the transit network. The highway trip tables are loaded onto the network during each Evans iteration. For each time period, seven iterations of the Evans process are performed to ensure that convergence on travel times is reached.

## Trip Distribution

Trip distribution is the process by which the zonal trip ends established in the trip generation analysis are linked together to form origin-destination patterns in a trip table format. Peak, midday, and evening trip ends are distributed separately. For each Evans iteration, a series of ten gravity-type distribution models are applied at the zonal level. These models follow the trip purpose and vehicle type stratifications established in trip generation.

## Modal Split

The modal split model is also run separately for the peak, midday, and evening time periods. The modal split model calculates the fraction of each person-trip interchange in the trip table that should be allocated to transit, and then assigns the residual to the highway side. The choice between highway and transit usage is made on the basis of comparative cost, travel time, and frequency of service, with other aspects of modal choice being used to modify this basic relationship. In general, the better the transit service, the higher the fraction assigned to transit, although trip purpose and auto ownership also affect the allocation. The model subdivides highway trips into auto drivers and passengers. Auto driver trips are added to the truck, taxi, and external vehicle trips in preparation for assignment to the highway network.

## Highway Assignment

For highway trips, the final step in the focused simulation process is the assignment of vehicle trips to the highway network representative of the alternative being modeled. For peak, midday, and evening travel, the assignment model produces the future traffic volumes for individual highway links that are required for the evaluation of each alternative. The regional nature of the highway network and trip table underlying the focused assignment process allows the diversion of travel into and through the study area to various points of entry and exit in response to the improvements made in the transportation system.

For each Evans iteration, highway trips are assigned to the network representative of a given alternative by determining the best (minimum time) route through the highway network for each zonal interchange, and then allocating the interzonal highway travel to the highway facilities along that route. This assignment model is "capacity restrained," which means that congestion levels are considered when determining the best route. The Evans equilibrium assignment method is used to implement the capacity constraint. When the assignment and associated trip table reach equilibrium, no path faster than the one actually assigned for each trip can be found through the network, given the capacity restrained travel times on each link.

## Transit Assignment

After equilibrium is achieved, the weighted average transit trip tables are assigned to the transit network to produce link and route passenger volumes. The transit person trips produced by the modal split model are "linked," which means that they do not include any transfers that occur either between transit trips or between auto approaches and transit lines. The transit assignment procedure accomplishes two major tasks. First, the transit trips are "unlinked" to include transfers, and second, the unlinked transit trips are associated with specific transit facilities to produce link, line, and station volumes. These tasks are accomplished simultaneously within the transit assignment model, which assigns the transit trip matrix to minimum impedance paths built through the transit network. There is no capacity-restraining procedure in the transit assignment model.

## Highway Traffic Assignment Validation

Before a focused simulation model can be used to predict future trip making patterns, its ability to replicate existing conditions is tested. The simulated highway assignment outputs are compared to current traffic counts taken on roadways serving the study area. The focused simulation model is executed with current conditions, and the results are compared with recent traffic counts. Based on this analysis, the focused model produced accurate traffic volumes. The validated model was then executed for the NoBuild and each Build alternative with socioeconomic and land use inputs reflective of future-year conditions.

Table 2 summarizes the error in the assigned daily traffic volumes. A total of 84 locations throughout the greater study area with available daily traffic counts were used for model validation. Seven of these locations are along US 422; 18 are ramp counts at interchanges; 17 are other facilities that are generally parallel to US 422, including portions of PA 23, PA 252, and North Gulph Road; 34 are on facilities that either cross US 422 or are perpendicular to it, such as the PA Turnpike, US 202, and Trooper Road; and 8 are local roadways in either Valley Forge Park or the corporate campus adjacent to Trooper Road. The total assigned traffic on all facilities, 1.74 million vehicles, is within about two percent of the total counted volume of 1.78 million vehicles. The overall correlation between predicted and actual facility volumes is 0.98 . The corresponding coefficient of determination $\left(R^{2}\right)$ is 0.96 , which indicates that the travel model explains about ninety six percent of the statistical variation contained in the traffic counts.

Table 2. Summary of Error in the Assigned Daily Traffic Volumes

| Location | Number of Facilities | Counted Volume | Simulated Volume | Percent Diff. | $\begin{array}{\|r\|} \hline \text { Root-Mean } \\ \text { Squared } \\ \text { Error } \end{array}$ | Coefficient of Correlation (R) | Coefficient of Determination <br> (R2) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| US 422 Mainline | 7 | 513,496 | 510,607 | -0.6\% | 4,226 | 0.944 | 0.891 |
| US 422 Ramps | 18 | 175,286 | 171,624 | -2.1\% | 3,758 | 0.838 | 0.702 |
| Parallel Facilities | 17 | 226,045 | 233,907 | 3.5\% | 2,590 | 0.944 | 0.892 |
| Crossing Facilities | 34 | 834,571 | 790,738 | -5.3\% | 6,852 | 0.974 | 0.948 |
| Other Local Roads | 8 | 30,498 | 33,095 | 8.5\% | 2,216 | 0.788 | 0.620 |
| All Facilities | 84 | 1,779,896 | 1,739,971 | -2.2\% | 5,034 | 0.980 | 0.961 |

Source: DVRPC February 2011

## Projected Traffic Volumes

Projected traffic volumes for the anticipated opening year, 2015, and a horizon year of 2035 are presented and analyzed in this chapter. For each scenario, a daily traffic forecast is prepared at each location where a current count was provided in Chapter II. In addition, AM and PM peak hour forecasts are provided for each scenario at the same locations that were shown in Figure 3.

## Daily Traffic Forecasts

Average annual daily traffic forecasts for 2015 and 2035 for Scenarios 1, 2, and 3 are analyzed and presented in this section. The discussion of daily traffic volume forecasts for each alternative are generally divided into groups that focus on the US 422 mainline, US 422 ramps, parallel facilities, and intersecting facilities.

## Scenario 1

Figure 7 provides the current and Scenario 1 (No-Build) average annual daily traffic volumes for both 2015 and 2035. In 2015, daily traffic volumes along US 422 are projected to range from 69,800 to $105,500 \mathrm{vpd}$. These volumes are approximately 6,700 to 9,900 vpd higher than current daily traffic volumes. The largest absolute increase occurs on the Schuylkill River Bridge. However, the largest percentage increase (10.4 percent) occurs between the Egypt and Trooper road interchanges. By 2035, the forecasted volumes on US 422 in the study area are between 74,700 and 112,200 vpd. These volumes are approximately 14 to 16 percent higher than current volumes. They result in 11,600 to 16,600 additional vehicles per day on US 422.

Under Scenario 1, volumes on individual ramps increase by 400 to 2,300 vpd by 2015 and by 1,100 to 4,300 vpd by 2035. By 2035, the ramps in the Egypt Road interchange are 1,200 to 1,400 vpd higher than current volumes. Trooper Road ramp volumes are 2,000 to $2,700 \mathrm{vpd}$ higher than current volumes. The largest absolute increases occur within the US 422/US 202 interchange while the largest relative increases occur within the 1st Avenue and PA 23 interchanges.

With a few exceptions, 2015 daily traffic volumes on facilities parallel to US 422 are projected to be less than 10 percent higher than current volumes. The absolute increases on these facilities are 1,400 vpd or fewer. Only North Gulph Road south of 1st Avenue will experience increases greater than $2,000 \mathrm{vpd}$. Here, traffic volumes will reach 29,700 vpd between 1st Avenue and Guthrie Road and 29,800 vpd between Guthrie Road and Goddard Boulevard. By 2035, these North Gulph Road volumes
Figure 7. Current, 2015, and 2035 Scenario 1 Average Daily Traffic Volumes

increase to 31,000 vpd between Guthrie Road and Goddard Boulevard and 31,000 vpd between 1st Avenue and Guthrie Road. Under Scenario 1, 2035 daily volumes on PA 23 will range from 15,900 to $24,500 \mathrm{vpd}$. These volumes are 2,100 to $3,500 \mathrm{vpd}$ higher than current volumes.

Traffic volume growth on facilities that cross US 422 is highly variable under Scenario 1. The highest growth occurs on the US 202 Expressway and the Pennsylvania Turnpike. Daily traffic volumes on US 202 in 2015 are 4,400 to $8,500 \mathrm{vpd}$ higher than current volumes; by 2035, US 202 volumes are 11,100 to 16,100 vpd above current traffic volumes. Egypt Road volumes in 2035 are approximately 2,700 to 4,300 vpd higher than current volumes, while Trooper Road volumes are 2,500 to 5,000 vpd above current daily traffic volumes. Traffic volume increases on other intersecting facilities range from 1,300 to $3,200 \mathrm{vpd}$.

Table 3 provides a summary of the current and 2015 average daily traffic volumes, along with absolute and relative comparisons between current volumes and Scenario 1 forecasts. The table also provides comparisons between Scenario 1 and Scenario 2 forecasts and comparisons between Scenario 2 and Scenario 3 forecasts. Table 4 provides these same tabulations and comparisons for the 2035 daily traffic forecasts.

## Scenarios 2 and 3

Figures 8 and 9 display the average daily traffic forecasts for all three future-year Scenarios for 2015 and 2035, respectively. In the figures, the Scenario 1 forecasts are shown in red, underneath the relevant highway facility; Scenario 2 forecasts are shown in green, above the highway facility; and Scenario 3 forecasts are shown in blue, above the Scenario 2 number. These figures readily allow for comparisons to be made between no-build and build alternative forecasts and between the two build alternatives.

The highway facility improvements associated with Scenarios 2 and 3 result in higher traffic volumes along US 422, compared to Scenario 1 (No-Build). Under Scenario 2, the 2015 daily traffic volumes between the PA 29 and PA 23 interchanges are 4,900 to 6,400 vpd higher than the corresponding Scenario 1 volumes, which represent increases of five to nine percent. Below the PA 23 interchange, the Scenario 2 volumes are only 400 to $1,100 \mathrm{vpd}$, or less than two percent, higher than the Scenario 1 volumes. Along US 422, the differences between the Scenario 2 and Scenario 3 volumes are very small. The largest difference, 1,500 vpd or 1.6 percent, occurs between the PA 23 and 1st Avenue interchanges. This difference is primarily due to the closure of the PA 23 onramp to US 422 eastbound, which is part of Scenario 2 but not Scenario 3.

By 2035, daily traffic volumes on US 422 under the improvement scenarios range from 85,000 to $121,300 \mathrm{vpd}$. These volumes are 3,100 to $11,200 \mathrm{vpd}$ higher than the corresponding Scenario 1 volumes, and represent increases of 3.3 to 14.6 percent. Again, the differences between Scenario 2 and 3 volumes are less than two percent, with the largest difference ( $1,700 \mathrm{vpd}$ ) occurring between the PA 23 and 1st Avenue interchanges.

The new westbound on-ramp and eastbound off-ramp at the Trooper Road interchange under Scenarios 2 and 3 are forecast to carry 2,100 to $2,500 \mathrm{vpd}$ in 2015 and 2,900 to 3,100 vpd in 2035. The construction of these ramps results in traffic volume reductions
Table 3．Current and 2015 Average Daily Traffic Volumes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  \& \& 우ํํํ우ํ 우ịị－ \& \&  \& \begin{tabular}{l}
ผํํㅇํ 우 \\
\(\div \div\) \\
으운운
\end{tabular} \&  \&  \& \begin{tabular}{l}
 -0 － \\
ㅇNㅇN문운
\end{tabular} \& \& \begin{tabular}{l}
 \\
 \\
이앙암유은은 문
\end{tabular} \& \begin{tabular}{l}
ㅇํㅇํㅇํ \\
 \\
88 N M
\end{tabular} \& \begin{tabular}{l}
ํㅜㅇㅇㅇ \\
\(-{ }^{-0}\)
\[
\therefore 00
\]
\end{tabular} \& \begin{tabular}{l}
Ұ웅ํ \\
No
\[
800
\]
\end{tabular} \& \(\stackrel{\circ}{+}\)
\(\stackrel{\circ}{+}\)
\(\stackrel{\circ}{\circ}\) \\
\hline  \& \&  ボ \& \&  \&  \&  \& \[
\begin{aligned}
\& \mathrm{O}_{1}^{\circ} \mathrm{O} \\
\& \dot{0} \mathrm{~m}
\end{aligned}
\] \&  \& \&  \&  \&  \& \[
\begin{aligned}
\& \mathrm{O} \\
\& \underset{\sim}{\circ} \mathrm{O} \\
\& \underset{\sim}{\circ} \\
\& \hline
\end{aligned}
\] \& \(\stackrel{\circ}{\circ}\) \\
\hline  \& \& ○웅ㅇㅇํ ํ ํ －\(\infty\) o io－ \& \&  \&  \& \begin{tabular}{l}
○ㅇํ ○웅 \(\underset{-1}{\circ}\) © \\
 
\end{tabular} \&  \& \begin{tabular}{l}
ถํํํํํํ लo－N \\
융ㅅN은운
\end{tabular} \& \& \begin{tabular}{l}
 \\
 \\
 デデデデテ
\end{tabular} \& \begin{tabular}{l}
iㅇํㅇํํ \(\infty \infty\) ， \\
BiO \\
－～
\end{tabular} \& \begin{tabular}{l}
 \\
 \\
888
\end{tabular} \&  \& ®े
Y

－
－ <br>

\hline  \& \&  \& \&  \&  \&  \& $$
\begin{aligned}
& \mathrm{O} \\
& \hline \mathrm{~N} \\
& \mathrm{O} \\
& \hline
\end{aligned}
$$ \&  \& \&  \&  \&  \&  \& － <br>

\hline  \& \& |  ○○○○ $\circ \infty$ |
| :--- |
|  ジN゙のベN | \& \&  \&  \&  ツへべべ

\[
\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{N} \underset{\sim}{\circ} \underset{\sim}{\infty}

\] \& | ํํํ |
| :--- |
| ト「 |
| $\stackrel{\infty}{\circ} \stackrel{\circ}{\circ}$ | \& ㅇํㅇํ 亏ㅇํ $\bigcirc$

ONơ웅 \& \&  $\dot{\omega}$ 内人 \&  \&  \&  \&  <br>

\hline  \& \&  \& \&  \&  \&  \& $$
\begin{aligned}
& \mathrm{O} \\
& \hline \mathrm{p} \\
& \text { in } \\
& \hline \mathbf{N}
\end{aligned}
$$ \&  \& \&  \&  \&  \&  \& $\stackrel{\mathrm{O}}{\mathrm{N}}$ <br>

\hline  \& \&  だざせ゚がが \& \&  \&  \&  \& $$
\begin{aligned}
& \text { No } \\
& \underset{\sim}{\circ} \underset{\sim}{\sim} \\
& \underset{\sim}{n}
\end{aligned}
$$ \&  \& \&  \&  \&  \&  \& $\stackrel{\sim}{\sim}$ <br>

\hline  \& әи！lu！ew ZZt Sn \&  \& US 422 Interchange Ramps \&  \&  \&  \&  \&  \&  \&  \&  \&  \&  \&  <br>
\hline
\end{tabular}

Table 3. Current and 2015 Average Daily Traffic Volumes (Continued)

| Location / Limits | Current Counts | 2015 <br> Forecast Scenario 1 | Current-2015 ChangeAbsolutePercent |  | 2015 <br> Forecast Scenario 2 | Scenario 2/Scenario 1 <br> Absolute Difference <br> Percent |  | $\begin{array}{r} 2015 \\ \text { Forecast } \\ \text { Scenario } 3 \end{array}$ | Scenario 3/Scenario 2 <br> Absolute Difference Percent |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersecting Facilities |  |  |  |  |  |  |  |  |  |  |
| Egypt Road - PA 29 to Greentree Road | 11,519 | 12,800 | 1,281 | 10.0\% | 12,800 | 0 | 0.0\% | 12,800 | 0 | 0.0\% |
| Egypt Road - Greentree Road to Mill Road | 19,000 | 20,900 | 1,900 | 9.1\% | 20,800 | -100 | -0.5\% | 20,900 | 100 | 0.5\% |
| Egypt Road - Mill Road to Black Rock Road/US 422 | 19,727 | 21,800 | 2,073 | 9.5\% | 21,600 | -200 | -0.9\% | 21,700 | 100 | 0.5\% |
| Egypt Road - US 422 to Surrey Lane | 23,352 | 25,200 | 1,848 | 7.3\% | 24,400 | -800 | -3.2\% | 24,400 | 0 | 0.0\% |
| Egypt Road - Surrey Lane to Pawlings Road/Park Avenue | 21,494 | 22,500 | 1,006 | 4.5\% | 22,000 | -500 | -2.2\% | 22,000 | 0 | 0.0\% |
| Egypt Road - Pawlings Road/Park Avenue to PA 363 (Trooper Road) | 22,219 | 22,800 | 581 | 2.5\% | 23,000 | 200 | 0.9\% | 23,000 | 0 | 0.0\% |
| Egypt Road - PA 363 (Trooper Road) to Main Street/Ridge Pike | 22,867 | 23,400 | 533 | 2.3\% | 24,000 | 600 | 2.6\% | 24,000 | 0 | 0.0\% |
| Country Club Road - Valley Park Road to PA 23 | 4,432 | 4,900 | 468 | 9.6\% | 4,400 | -500 | -10.2\% | 4,400 | 0 | 0.0\% |
| Ferry Lane - PA 23 to Pawlings Road | 4,160 | 5,000 | 840 | 16.8\% | 4,200 | -800 | -16.0\% | 4,300 | 100 | 2.4\% |
| Pawlings Road - Valley Forge Road to Ferry Lane | 6,894 | 7,900 | 1,006 | 12.7\% | 7,300 | -600 | -7.6\% | 7,300 | 0 | 0.0\% |
| Pawlings Road - Ferry Lane to Pawlings Circle | 10,532 | 12,000 | 1,468 | 12.2\% | 11,300 | -700 | -5.8\% | 11,400 | 100 | 0.9\% |
| Pawlings Road - Pawlings Circle to US 422 | 9,572 | 10,800 | 1,228 | 11.4\% | 10,000 | -800 | -7.4\% | 10,000 | 0 | 0.0\% |
| Pawlings Road - US 422 to Audubon Road | 9,572 | 10,500 | 928 | 8.8\% | 9,700 | -800 | -7.6\% | 9,700 | 0 | 0.0\% |
| Pawlings Road - Audubon Road to Egypt Road | 12,084 | 12,900 | 816 | 6.3\% | 12,400 | -500 | -3.9\% | 12,400 | 0 | 0.0\% |
| Park Avenue - Egypt Road to Woodward Road | 11,160 | 11,500 | 340 | 3.0\% | 11,200 | -300 | -2.6\% | 11,200 | 0 | 0.0\% |
| PA 363 (Trooper Road) - US 422 to Audobon Road | 33,658 | 35,800 | 2,142 | 6.0\% | 37,900 | 2,100 | 5.9\% | 38,100 | 200 | 0.5\% |
| PA 363 (Trooper Road) - Audubon Road to Van Buren Avenue | 26,623 | 27,700 | 1,077 | 3.9\% | 29,900 | 2,200 | 7.9\% | 30,000 | 100 | 0.3\% |
| PA 363 (Trooper Road) - Van Buren Avenue to Boulevard of the Generals | 26,981 | 27,800 | 819 | 2.9\% | 28,900 | 1,100 | 4.0\% | 28,900 | 0 | 0.0\% |
| PA 363 (Trooper Road) - Boulevard of the Generals to Egypt Road | 22,487 | 23,100 | 613 | 2.7\% | 24,000 | 900 | 3.9\% | 23,900 | -100 | -0.4\% |
| PA 363 (Trooper Road) - Egypt Road to Mill Road | 21,489 | 22,000 | 511 | 2.3\% | 22,700 | 700 | 3.2\% | 22,600 | -100 | -0.4\% |
| PA 23 - Outer Line Road to US 422 Eastbound Ramps | 14,481 | 15,400 | 919 | 6.0\% | 16,300 | 900 | 5.8\% | 15,500 | -800 | -4.9\% |
| PA 23 - US 422 Westbound Ramps to Moore Road | 20,924 | 21,900 | 976 | 4.5\% | 23,100 | 1,200 | 5.5\% | 22,200 | -900 | -3.9\% |
| PA 23 - Moore Road to Beidler Road | 14,665 | 15,500 | 835 | 5.4\% | 17,400 | 1,900 | 12.3\% | 17,100 | -300 | -1.7\% |
| First Avenue - US 422 to Gulph Road | 7,276 | 8,600 | 1,324 | 15.4\% | 11,100 | 2,500 | 29.1\% | 10,200 | -900 | -8.1\% |
| First Avenue - Gulph Road to Moore Road | 15,134 | 15,900 | 766 | 4.8\% | 15,800 | -100 | -0.6\% | 16,000 | 200 | 1.3\% |
| Pennsylvania Turnpike - Downingtown Interchange to Valley Forge Interchange | 44,412 | 52,900 | 8,488 | 16.0\% | 52,200 | -700 | -1.3\% | 52,200 | 0 | 0.0\% |
| Pennsylvania Turnpike - Valley Forge Interchange to Norristown Interchange | 54,829 | 59,200 | 4,371 | 7.4\% | 58,800 | -400 | -0.7\% | 58,800 | 0 | 0.0\% |
| US 202 Expressway - West Valley Road to US 422 | 96,905 | 100,800 | 3,895 | 3.9\% | 102,100 | 1,300 | 1.3\% | 101,900 | -200 | -0.2\% |
| US 202 Expressway - US 422 to South Warner Road | 126,480 | 132,700 | 6,220 | 4.7\% | 133,600 | 900 | 0.7\% | 133,400 | -200 | -0.1\% |
| Local Area Roadways |  |  |  |  |  |  |  |  |  |  |
| Audubon Road - Pawlings Road to Rittenhouse Road | 7,894 | 9,000 | 1,106 | 12.3\% | 8,300 | -700 | -7.8\% | 8,400 | 100 | 1.2\% |
| Audubon Road - Rittenhouse Road to Adams Avenue | 6,752 | 7,500 | 748 | 10.0\% | 7,200 | -300 | -4.0\% | 7,300 | 100 | 1.4\% |
| Audubon Road - Adams Avenue to PA 363 (Trooper Road) | 7,405 | 8,300 | 895 | 10.8\% | 8,500 | 200 | 2.4\% | 8,500 | 0 | 0.0\% |
| Rittenhouse Road - Audubon Road to Van Buren Avenue | 2,998 | 3,200 | 202 | 6.3\% | 3,100 | -100 | -3.1\% | 3,000 | -100 | -3.2\% |
| Van Buren Avenue - Adams Avenue to PA 363 (Trooper Road) | 2,554 | 2,700 | 146 | 5.4\% | 2,900 | 200 | 7.4\% | 2,900 | 0 | 0.0\% |
| Outer Line Drive - Gulph Road to Visitors Center Drive | 595 | 1,100 | 505 | 45.9\% | 1,100 | 0 | 0.0\% | 1,200 | 100 | 9.1\% |
| Outer Line Drive - Visitors Center Drive to PA 23 | 1,870 | 2,300 | 430 | 18.7\% | 2,300 | 0 | 0.0\% | 2,400 | 100 | 4.3\% |
| County Line Road - Gulph Road to PA 23 | 430 | 1,000 | 570 | 57.0\% | 1,000 | 0 | 0.0\% | 900 | -100 | -10.0\% |

Table 4．Current and 2035 Average Daily Traffic Volumes

|  | 응ㅇㅇㅇㅇํㄱํㅇํ $\bigcirc 00$－－ |  | ஸㅇํㅇํㅇ <br> $\div$－ ৪운 |  |  <br>  | $\infty$ ํํํ <br> 8 O | 웅ํㅇํㅇํㅇํ〒－¢ |  |  $00-000 \div$ | సิํ స్े హి 꾼ㄷ <br> 8， 8 <br> ヘ | $800$ | ถิ ธั ธి <br> 00 <br> 000 | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  | O－ |
|  | ૦ㅇㅇㅇㅇ 응 <br>  <br> 이우우N은윤 <br> べデ「デゥ |  |  <br>  <br>  |  |  ஸ운 <br>  |  | ํ ํ ถㅇํ ㅇํ in N <br> 온 88080 |  | ஷํํㅇํㅇํㅇํㅇํ <br>  <br>  | ケे ถํ ङे ल゙ゥ OBO 응 | লㅇํㅇํㅇ <br> $\div$ <br> 운 웅 | ผิ ถัㅇํ NOO $800$ | $\stackrel{\circ}{\circ}$ ì － － |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { OOB O } \\ & \text { Ni } \\ & \text { Nj } \end{aligned}$ |  |  | － |
| 0 0 <br> 0  <br> 0 0 |  <br>  |  |  |  | ケํํํํํํ ฌํ <br>  | ஃㅇํ ํ～ <br> $\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$ | ํ ケํํ ㅇํ ஃํ ゆ゙ざざが <br> Nons in ion |  |  <br>  <br>  mN NNNN |  |  | 우ํ ฌั <br> $\stackrel{\text { 上゙ }}{\sim}$ ̇ <br> ®్ర్ల్ల స్ల | $\stackrel{\text { ¢ें }}{\text { N }}$－ N N |
|  |  |  | $\begin{aligned} & \mathrm{O}_{\mathrm{O}}^{\mathrm{O}} \mathrm{O} \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~N} \\ & \hline 1 \\ & \hline \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & 8.808 \\ & 080 \\ & \hdashline-i \end{aligned}$ | － |
| E． En on 0 0 0 |  <br>  |  |  |  |  | $\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{N} \end{aligned}$ |  |  |  <br> え゙ ヅッ゙べげず |  |  | $\stackrel{\rightharpoonup}{\circ} \stackrel{M}{N} \stackrel{\infty}{c} \stackrel{\infty}{c}$ | $\stackrel{\infty}{\substack{\text { N }}}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 4. Current and 2035 Average Daily Traffic Volumes (Continued)

| Location / Limits | Current Counts | $\begin{array}{r} 2035 \\ \text { Forecast } \\ \text { Scenario } 1 \end{array}$ | Current - 2035 Change |  | 2035 <br> Forecast Scenario 2 | Scenario 2/Scenario 1 Difference |  | Forecas Scenario 3 | Scenario 3/Scenario 2 Difference |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Intersecting Facilities |  |  |  |  |  |  |  |  |  |  |
| Egypt Road - PA 29 to Greentree Road | 11,519 | 15,300 | 3,781 | 24.7\% | 15,400 | 100 | 0.7\% | 15,400 | 0 | 0.0\% |
| Egypt Road - Greentree Road to Mill Road | 19,000 | 23,300 | 4,300 | 18.5\% | 23,400 | 100 | 0.4\% | 23,400 | 0 | 0.0\% |
| Egypt Road - Mill Road to Black Rock Road/US 422 | 19,727 | 23,400 | 3,673 | 15.7\% | 23,700 | 300 | 1.3\% | 23,500 | -200 | -0.8\% |
| Egypt Road - US 422 to Surrey Lane | 23,352 | 27,000 | 3,648 | 13.5\% | 27,300 | 300 | 1.1\% | 27,200 | -100 | -0.4\% |
| Egypt Road - Surrey Lane to Pawlings Road/Park Avenue | 21,494 | 24,400 | 2,906 | 11.9\% | 25,000 | 600 | 2.5\% | 24,900 | -100 | -0.4\% |
| Egypt Road - Pawlings Road/Park Avenue to Trooper Road | 22,219 | 25,400 | 3,181 | 12.5\% | 25,600 | 200 | 0.8\% | 25,500 | -100 | -0.4\% |
| Egypt Road - PA 363 (Trooper Road) to Main StreetRidge Pike | 22,867 | 25,600 | 2,733 | 10.7\% | 25,700 | 100 | 0.4\% | 25,600 | -100 | -0.4\% |
| Country Club Road - Valley Park Road to PA 23 | 4,432 | 5,700 | 1,268 | 22.2\% | 5,700 | 0 | 0.0\% | 5,600 | -100 | -1.8\% |
| Ferry Lane - PA 23 to Pawlings Road | 4,160 | 5,900 | 1,740 | 29.5\% | 5,600 | -300 | -5.1\% | 5,500 | -100 | -1.8\% |
| Pawlings Road - Valley Forge Road to Ferry Lane | 6,894 | 8,700 | 1,806 | 20.8\% | 8,100 | -600 | -6.9\% | 8,000 | -100 | -1.2\% |
| Pawlings Road - Ferry Lane to Pawlings Circle | 10,532 | 13,700 | 3,168 | 23.1\% | 12,900 | -800 | -5.8\% | 12,700 | -200 | -1.6\% |
| Pawlings Road - Pawlings Circle to US 422 | 9,572 | 12,100 | 2,528 | 20.9\% | 11,200 | -900 | -7.4\% | 11,000 | -200 | -1.8\% |
| Pawlings Road - US 422 to Audobon Road | 9,572 | 12,000 | 2,428 | 20.2\% | 11,100 | -900 | -7.5\% | 10,800 | -300 | -2.7\% |
| Pawlings Road - Audubon Road to Egypt Road | 12,084 | 14,500 | 2,416 | 16.7\% | 13,800 | -700 | -4.8\% | 13,600 | -200 | -1.4\% |
| Park Avenue - Egypt Road to Woodward Road | 11,160 | 12,300 | 1,140 | 9.3\% | 11,700 | -600 | -4.9\% | 11,600 | -100 | -0.9\% |
| PA 363 (Trooper Road) - US 422 to Audubon Road | 33,658 | 38,700 | 5,042 | 13.0\% | 41,900 | 3,200 | 8.3\% | 41,700 | -200 | -0.5\% |
| PA 363 (Trooper Road) - Audubon Road to Van Buren Avenue | 26,623 | 29,900 | 3,277 | 11.0\% | 32,800 | 2,900 | 9.7\% | 32,500 | -300 | -0.9\% |
| PA 363 (Trooper Road) - Van Buren Avenue to Boulevard of the Generals | 26,981 | 29,800 | 2,819 | 9.5\% | 31,200 | 1,400 | 4.7\% | 31,000 | -200 | -0.6\% |
| PA 363 (Trooper Road) - Boulevard of the Generals to Egypt Road | 22,487 | 25,100 | 2,613 | 10.4\% | 25,900 | 800 | 3.2\% | 25,600 | -300 | -1.2\% |
| PA 363 (Trooper Road) - Egypt Road to Mill Road | 21,489 | 24,000 | 2,511 | 10.5\% | 24,600 | 600 | 2.5\% | 24,300 | -300 | -1.2\% |
| PA 23 - Outer Line Road to US 422 Eastbound Ramps | 14,481 | 16,800 | 2,319 | 13.8\% | 17,900 | 1,100 | 6.5\% | 17,200 | -700 | -3.9\% |
| PA 23 - US 422 Westbound Ramps to Moore Road | 20,924 | 23,400 | 2,476 | 10.6\% | 25,300 | 1,900 | 8.1\% | 23,900 | -1,400 | -5.5\% |
| PA 23 - Moore Road to Beidler Road | 14,665 | 16,900 | 2,235 | 13.2\% | 18,100 | 1,200 | 7.1\% | 17,400 | -700 | -3.9\% |
| 1st Avenue - US 422 to Gulph Road | 7,276 | 10,300 | 3,024 | 29.4\% | 12,400 | 2,100 | 20.4\% | 12,200 | -200 | -1.6\% |
| 1st Avenue - Gulph Road to Moore Road | 15,134 | 17,900 | 2,766 | 15.5\% | 17,000 | -900 | -5.0\% | 17,100 | 100 | 0.6\% |
| Pennsylvania Turnike - Downingtown Interchange to Valley Forge Interchange | 44,412 | 60,500 | 16,088 | 26.6\% | 61,000 | 500 | 0.8\% | 60,700 | -300 | -0.5\% |
| Pennsylvania Turnike - Valley Forge Interchange to Norristown Interchange | 54,829 | 64,900 | 10,071 | 15.5\% | 64,100 | -800 | -1.2\% | 64,000 | -100 | -0.2\% |
| US 202 Expressway - West Valley Road to US 422 | 96,905 | 112,100 | 15,195 | 13.6\% | 112,500 | 400 |  | 111,500 |  | -0.9\% |
| US 202 Expressway - US 422 to South Warner Road | 126,480 | 145,800 | 19,320 | 13.3\% | 146,000 | 200 | 0.1\% | 145,100 | -900 | -0.6\% |
| Local Area Roadways |  |  |  |  |  |  |  |  |  |  |
| Audubon Road - Pawlings Road to Rittenhouse Road | 7,894 | 10,600 | 2,706 | 25.5\% | 10,100 | -500 | -4.7\% | 10,000 | -100 | -1.0\% |
| Audubon Road - Rittenhouse Road to Adams Avenue | 6,752 | 8,700 | 1,948 | 22.4\% | 8,100 | -600 | -6.9\% | 8,000 | -100 | -1.2\% |
| Audubon Road - Adams Avenue to Trooper Road | 7,405 | 9,300 | 1,895 | 20.4\% | 8,700 | -600 | -6.5\% | 8,500 | -200 | -2.3\% |
| Rittenhouse Road - Audubon Road to Van Buren Avenue | 2,998 | 3,600 | 602 | 16.7\% | 3,500 | -100 | -2.8\% | 3,500 | 0 | 0.0\% |
| Van Buren Avenue - Adams Avenue to PA 363 (Trooper Road) | 2,554 | 3,200 | 646 | 20.2\% | 3,200 | 0 | 0.0\% | 3,300 | 100 | 3.1\% |
| Outer Line Drive - Gulph Road to Visitors Center Drive | 595 | 1,900 | 1,305 | 68.7\% | 1,900 | 0 | 0.0\% | 1,900 | 0 |  |
| Outer Line Drive - Visitors Center Drive to PA 23 | 1,870 | 3,300 | 1,430 | 43.3\% | 3,300 | 0 | 0.0\% | 3,300 | 0 | 0.0\% |
| County Line Road - Gulph Road to PA 23 | 430 | 1,800 | 1,370 | 76.1\% | 1,900 | 100 | 5.6\% | 1,800 | -100 | -5.3\% |


Figure 9. 2035 Scenarios 1, 2, and 3 Average Daily Traffic Volumes

on the westbound on-ramp and eastbound off-ramp at the Egypt Road interchange; these reductions range from 700 to 900 vpd in 2015 and 600 to 800 vpd in 2035.
Compared to the Scenario 1 forecasts, the eastbound ramps at the PA 23 interchange carry less traffic under Scenarios 2 and 3 . The westbound ramps carry the same, or slightly higher, traffic volumes. Under Scenario 2, the closure of the eastbound on-ramp at PA 23 results in more traffic using the on-ramp at 1st Avenue. Although the eastbound on-ramp at PA 23 is not closed under Scenario 3, this scenario also exhibits reduced volumes on the eastbound ramps at PA 23 and increased volumes at 1st Avenue, compared to Scenario 1. In 2035, the PA 23 on-ramp serves 1,700 fewer vehicles per day and the 1st Avenue on-ramp serves 1,700 more vehicles per day under Scenario 3 than under Scenario 1.

Facilities parallel to US 422 carry lower traffic volumes under Scenarios 2 and 3 than under Scenario 1, due to the additional capacity that is provided on US 422 under these scenarios. One exception is North Gulph Road between PA 23 and 1st Avenue under Scenario 2. Here, volumes are increased due to the diversion of traffic from the PA 23 eastbound on-ramp to the 1st Avenue ramp.

Compared to Scenario 1, the daily traffic volume changes on facilities that intersect US 422 are mixed under Scenarios 2 and 3. Egypt Road volumes are reduced slightly, due to the diversion to the new Trooper Road ramps. Volumes are also reduced on Pawlings Road. Most other intersecting facilities, however, serve higher traffic volumes under Scenarios 2 and 3, as more traffic uses these roads for access to or egress from US 422. These increases tend to be relatively small, typically in the three to five percent range. The largest increases occur on Trooper Road, which serves 2,100 to 2,300 additional vpd in 2015 and 2,600 to 3,200 additional vpd in 2035, compared to the Scenario 1 forecasts. They represent between 5.9 and 9.7 percent more traffic than the comparable Scenario 1 forecasts.

## Peak Hour Traffic Forecasts

Generally, the relationships between current and future peak hour volumes and between the various future-year scenarios follow the same patterns and trends as the daily traffic volumes. However, the percentage of daily traffic that occurs during the future AM and PM peak hours is somewhat less than the percentage under current conditions. This is consistent with the "peak spreading" that occurs as traffic volumes increase. As traffic volumes rise and congestion levels increase, a greater percentage of traffic is shifted to the "shoulders" of the peak, i.e., immediately before and after the peak hour.

AM and PM peak hour traffic forecasts for the US 422 mainline, individual interchange ramps, and selected highway facilities, including intersection turning movements, are shown in Figures 10 through 15 in the Appendix. Figures 10 through 12 display the 2015 peak hour forecasts for Scenarios 1, 2, and 3, respectively. The 2035 peak hour forecasts are displayed in Figures 13 through 15. In each case, peak hour forecasts are provided at each location where current peak hour traffic counts were shown in Figure 3.

## Conclusions

The US 422 River Crossing Complex traffic study is focused on the US 422 corridor between Egypt Road and US 202. The current daily traffic volumes along this portion of US 422 range from 63,100 to 95,600 vehicles. High traffic volumes combined with operation deficiencies result in recurring congestion and delay throughout the corridor.

The study area surrounding this portion of US 422 is home to over 127,000 residents and the location of about the same number of jobs. Between 2010 and 2035, the study area is projected to increase its population by nearly 22,000 residents. It will also add 27,000 new jobs, an increase of 21 percent, during this time period.

Forecasts of future-year traffic volumes are prepared and evaluated for three different highway network scenarios: a no-build scenario and two build scenarios. Under Scenario 1 (No-Build), volumes on US 422 are projected to be between 74,700 and $112,200 \mathrm{vpd}$ by 2035 . These 2035 volumes represent increases of 11,600 to 16,600 vpd over current traffic volumes.

Both of the build scenarios widen US 422 to six lanes from the US 202 interchange through the PA 363 interchange, along with interchange reconstructions and associated improvements to intersecting and parallel roads in the corridor. These scenarios accommodate higher traffic volumes than Scenario 1. By 2035, US 422 volumes are forecast to range from 85,000 to 121,300 vpd under the build scenarios. However, these scenarios will see a significant reduction in traffic volume per lane compared to Scenario 1.

## 2015 and 2035 AM/PM Peak Hour Traffic Forecasts

Figure 10. 2015 AM/PM Peak Hour Traffic Forecasts for Scenario 1


Figure 11. 2015 AM/PM Peak Hour Traffic Forecasts for Scenario 2


Figure 13. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 1


Figure 14. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 2


Figure 14. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 2


Figure 15. 2035 AM/PM Peak Hour Traffic Forecasts for Scenario 3


| Publication Title: | US 422 River Crossing Traffic Study |
| :--- | :--- |
| Publication Number: | TR10069 |
| Date Published: | February 2011 |
| Geographic Area Covered: | The municipalities of Lower Providence Township, <br> Upper Merion Township, Upper Providence Township, <br> and West Norriton Township in Montgomery County <br> and Schuylkill Township and Tredyffrin Township in <br> Chester County. |
| Key Words: | US 422, River Crossing, Traffic Forecasts, Travel <br> Simulation, AADT, AM and PM Peak Hour Traffic <br> Volumes |
| This report documents 2015 and 2035 traffic forecasts <br> for the US 422 River Crossing Traffic Study Area. |  |
| Average daily and AM and PM peak hour forecasts are <br> provided for Scenario 1 (No-Build Alternative) and |  |
| Scenarios 2 and 3 (Build Alternatives) and compared to |  |
| current traffic volumes. |  |

```
Staff Contact:
Matthew T. Gates
Senior Transportation Engineer
風 (215) 238-2911
` mgates@dvrpc.org
```

Delaware Valley Regional Planning Commission
190 N Independence Mall West
ACP Building, $8^{\text {th }}$ Floor
Philadelphia, PA 19106-1520
Phone: (215) 592-1800
Fax: (215) 592-9125
Internet: www.dvrpc.org

PLANNINE COMMISSION
190 N Independence Mall West
ACP Building, $8^{\text {m }}$ Floor
Philadelphia, PA 19106-1520
Phone: 215-592-1800
Fax: 215-592-9125
Website: www dvrpc.org

