
pennsylvania
DEPARTMENT OF TRANSPORTATION

pennsylvania
DEPARTMENT OF TRANSPORTATION

The Delaware Valley Regional Planning Commission is dedicated to uniting the region's elected officials, planning professionals, and the public with a common vision of making a great region even greater. Shaping the way we live, work, and play, DVRPC builds consensus on improving transportation, promoting smart growth, protecting the environment, and enhancing the economy. We serve a diverse region of nine counties: Bucks, Chester, Delaware, Montgomery, and Philadelphia in Pennsylvania; and Burlington, Camden, Gloucester, and Mercer in New Jersey. DVRPC is the federally designated Metropolitan Planning Organization for the Greater Philadelphia Region leading the way to a better future.

The symbol in our logo is adapted from the official DVRPC seal and is designed as a stylized image of the Delaware Valley. The outer ring symbolizes the region as a whole while the diagonal bar signifies the Delaware River. The two adjoining crescents represent the Commonwealth of Pennsylvania and the State of New Jersey.

DVRPC is funded by a variety of funding sources including federal grants from the U.S. Department of Transportation's Federal Highway Administration (FHWA) and Federal Transit Administration (FTA), the Pennsylvania and New Jersey departments of transportation, as well as by DVRPC's state and local member governments. The authors, however, are solely responsible for the findings and conclusions herein, which may not represent the official views or policies of the funding agencies.

DVRPC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. DVRPC's website (www.dvrpc.org) may be translated into multiple languages. Publications and other public documents can be made available in alternative languages and formats, if requested. For more information, please call (215) 238-2871.

Table of Contents

Executive Summary 1
CHAPTER 1
Introduction 3

- What Is an RSOA? 3
- The I-95 Bucks County Audit Event 4
C H A P TER 2
Corridor Description and Analysis 5
- Study Location 5
- Roadway Characteristics 5
- Traffic Volumes7
- Operations Studies 7
- Incident Management 9
- ITS Infrastructure 9
- CMP 9
- Travel Time and Congestion 10
- Crash Findings 13
CHAPTER 3
Findings and Recommendations 17
- Priorities 17
- Issues and Strategies Matrix. 18
C H A P TER 4
Conclusions 53
Figures and Tables
Figure 1: Regional Setting 5
Figure 2: Study Area 6
Figure 3: Annual Average Daily Traffic Volumes 8
Figure 4: Travel Time and Congestion - AM. 11
Figure 5: Travel Time and Congestion - PM. 12
Figure 6: Panel 1A (Philadelphia municipal line to Tennis Avenue) 20
Figure 7: Panel 1 (interchange 35, Woodhaven Road and Cornwells Heights Park and Ride) 22
Figure 8: Panel 2 (interchange 37, PA 132 Street Road) 26
Figure 9: Panel 3 (north of interchange 37, PA 132 Street Road) 30
Figure 10: Panel 4 (north over Neshaminy Creek into Bristol Township) 32
Figure 11: Panel 5 (interchange 40, PA 413) 34
Figure 12: Panel 6 (north over I-276 into Middletown Township) 36
Figure 13: Panel 7 (north of I-276 to Trenton Road) 38
Figure 14: Panel 8 (Trenton Road north to interchange 44, US 1) 40
Figure 15: Panel 9 (north under PA 123 Old Lincoln Highway overpass) 42
Figure 16: Panel 10 (interchange 46, US 1 Lincoln Highway) 44
Figure 17: Panel 11 (north of interchange 46, US 1, into Lower Makefield Township) 46
Figure 18: Panel 12 (north over Yardley-Langhorne Road) 48
Figure 19: Panel 13 (interchange 49, PA 332 Newton-Yardley Road) 50
Table 1: Panel 1A (Philadelphia municipal line to Tennis Avenue) 21
Table 2: Panel 1 (interchange 35, Woodhaven Road and Cornwells Heights Park and Ride) 23
Table 3: Panel 2 (interchange 37, PA 132 Street Road) 27
Table 4: Panel 3 (north of interchange 37, PA 132 Street Road) 31
Table 5: Panel 4 (north over Neshaminy Creek into Bristol Township) 33
Table 6: Panel 5 (interchange 40, PA 413) 35
Table 7: Panel 6 (north over I-276 into Middletown Township) 37
Table 8: Panel 7 (north of I-276 to Trenton Road) 39
Table 9: Panel 8 (Trenton Road north to interchange 44, US 1) 41
Table 10: Panel 9 (north under PA 123 Old Lincoln Highway overpass). 43
Table 11: Panel 10 (interchange 46, US 1 Lincoln Highway) 45
Table 12: Panel 11 (north of interchange 46, US 1, into Lower Makefield Township) 47
Table 13: Panel 12 (north over Yardley-Langhorne Road) 49
Table 14: Panel 13 (interchange 49, PA 332 Newton-Yardley Road) 51
Table 15: Corridor-Wide Issues and Strategies 52
Appendices
A PPENDIX A
Audit Team A-1
A P P E N D I X B
Crash Data. B-1
A P P E N D I X CPresentation.C-1

Executive Summary

Upon request from the Federal Highway Administration (FHWA) and the Pennsylvania Department of Transportation (PennDOT), the Delaware Valley Regional Planning Commission (DVRPC) conducted a first-ever, hybrid Road Safety and Operations Audit (RSOA) on the Delaware County section of I-95. Building on the success of that event, the FHWA recommended a second RSOA, this time on a 15-mile section of I-95 in Bucks County.

DVRPC's I-95 Bucks County RSOA is a hybrid of the standard Road Safety Audit (RSA) and DVRPC's US 202, Section 200 Transportation Operations Audit. This format is an evolution of the RSA process, designed to make efficient use of resources and of the team members' limited time. An RSOA is an effective way of identifying crash-causing trends and operations concerns, as well as brainstorming appropriate countermeasures, utilizing an approach that promotes transportation safety while maintaining mobility. This document is the final report for the I-95 Bucks County RSOA. This project represents a step toward implementation of DVRPC's 2012 Transportation Safety Action Plan: Improving Transportation Safety in the Delaware Valley (August 2012, \#12030), and PennDOT's Strategic Highway Safety Plan (SHSP).

The driving force behind the I-95 RSOAs was the FHWA's desire to assess sections of I-95 in concert with the multi-decade I-95 Corridor Reconstruction Project currently underway. PennDOT has developed a strategy to address the 51 miles of I-95 through Pennsylvania by dividing it into five smaller and more manageable subsections. These subsections are identified as Sectors A through E according to priority, A being the highest priority. Because the Bucks County portion of I-95 is an even lower-priority sector than the Delaware County section, and not slated for work to begin until 2030 or later, an audit was recommended as a proactive strategy to identify and address as many immediate safety and operational issues as possible, focusing on low-cost improvements.

Several sections of I-95 in Bucks County were included on the PennDOT District 6-0 2008 High Crash Location (HCL) list. Of the 377 high crash locations identified statewide by PennDOT, 209 were within District 6-0, 12 were on interstate highways, and, of those, two were on I-95 in Bucks County. This segment was also the site of five fatal crashes that claimed the lives of five people during the analysis period of 2008 through 2010.

The I-95 Bucks County RSOA event was conducted on Thursday, May 26, 2011. The audit team of 12 participants included representation from the FHWA (Harrisburg and Philadelphia, Pennsylvania, offices), PennDOT District 6-0 (Traffic, Safety, Traffic Freeway Management, and Maintenance divisions), Pennsylvania State Police, Bristol Township and Middletown Township Police Departments, Bucks County Planning Commission, Bucks County Transportation Management Association, and DVRPC. See Appendix A for the full list of audit team members.

On June 2, 2011, a follow-up meeting of the audit team was held to prioritize problem locations, sketch out improvement strategies, and complete the audit response sheet. This meeting was attended by most of the audit event attendees as well as additional PennDOT personnel.

One location the audit team discussed at length is the 1.25 -mile long (northbound and southbound) I-95 segment at the Street Road interchanges. This stretch of I-95 is of interest because of a development project that is currently on hold.

Another location of special concern is the half-mile segment of I-95 northbound between the Street Road and Bristol interchanges. This segment was chosen for further analysis because it contains the two highest crash segments on the corridor, has recurring congestion, and is in the area of influence of a high-volume interchange.

Eighty-seven site-specific safety and operational issues, and seven corridor-wide issues, were identified by the team during the audit. They are divided by northbound or southbound direction of travel and are organized by aerial panel map and discussed in Chapter 3, "Findings and Recommendations." Each panel is represented graphically on an aerial-view map and has a corresponding table. This layout is designed to assist the reader in locating identified safety issues and implemented improvements.

Some of the recommended improvements have been implemented since the completion of the audit event, which can be attributed to the hard work and collaboration between the various PennDOT District 6-0 offices. Each of the following low-cost improvements is listed on the table in Chapter 3 and identified on the corresponding maps: new line striping, missing signs replaced, repaired guide rail, vegetation obscuring sight distance trimmed, and sun glare screens installed. Long-term issues identified include: inadequate shoulders, insufficient off-ramp storage capacity, merge area problems, closely spaced exits and on-ramps, and recurring peak-period congestion.

Introduction

As the final report for the I-95 Bucks County RSOA, this document represents a step toward implementation of PennDOT's SHSP and DVRPC's Safety Action Plan. The RSOA process utilizes a nontraditional approach to address crash and operations problems through an intensive, collaborative forum. With assistance from PennDOT District 6-0, DVRPC utilized crash data summaries and crash record resumes from the Pennsylvania Crash Data Analysis and Retrieval Tool (CDART) for the crash analysis portion of the audit.

State departments of transportation are required to develop an SHSP in order to draw on federal safety funds according to the former Safe, Accountable, Flexible, and Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). This act has since been replaced by new legislation called Moving Ahead for Progress in the 21st Century (MAP-21).

In Pennsylvania, each PennDOT district office is required to develop its own safety plan that is incorporated in the state's SHSP. Over the last four fiscal years, DVRPC has been coordinating with PennDOT District 6-0 to conduct road safety audits on corridors identified on their Section 148 Highway Safety Improvement Program (HSIP) that are eligible for dedicated funding but not already programmed. To date, over 20 corridors in the bi-state DVRPC region have been addressed in urban, suburban, and rural settings. The I95 Bucks County RSOA is the second event on an interstate highway conducted by DVRPC, building on the implementation success of the I-95 Delaware County RSOA of 2010.

What Is an RSOA?

An RSOA is a formal safety and operations performance examination of an existing or future road or intersection by a multi-disciplinary audit team. Road safety and operations audits can be used on a variety of projects, though the format was created for use on a controlled access highway.

A primary objective of the RSOA is to generate improvement recommendations for roadway segments demonstrating a history of, or potential for, a high frequency of motor vehicle crashes or an identifiable pattern of crash types. Emphasis is placed on identifying low-cost, quick-turnaround safety and operations improvements to address issues where possible, though not excluding more complex, longer-term strategies. Implementation of improvement strategies identified through this process may be eligible for HSIP funds. The RSOA process is adaptable to local needs and conditions, and recommendations can be implemented incrementally as time and resources permit.

The Bucks County RSOA draws on DVRPC's experience with the I-95 RSOA in Delaware County, and two other DVRPC efforts: (1) the US 202, Section 200 Transportation Operations Audit (2010, \#10041), and (2) the Transportation Systems Management and Operations (TSM\&O) study for I-95 in Delaware County (2009, \#08085). Outcomes of the TSM\&O study include the establishment of official PennDOT detour routes and an Incident Management Task Force (IMTF).

Prior to the one-day audit event, DVRPC collected and analyzed relevant data, including crash concentration area and corridor-wide crash summary analyses, crash rates, daytime and nighttime video of the roadway, traffic volume data, congestion data, travel-time data, and aerial photographs. DVRPC staff also conducted a pre-audit field visit to examine conditions and take photographs.

The audit event has three basic components in which the audit team participates:

- Pre-audit: The study team reviews location characteristics, crash analysis, and other transportation data.
- Field visit: The study team examines conditions along the corridor via windshield survey.
- Post-audit: The study team shares observations from the field visit, develops a list of problems and potential strategies, and discusses priorities.

Following the event, DVRPC staff compiled the identified problems and potential strategies into a matrix and sent it to the audit team for review. Then the table was revisited at a meeting on June 2, 2011 (one week after the audit event), to complete the response sheet, further develop strategies, and prioritize the issues.

The I-95 Bucks County Audit Event

The one-day audit was conducted on Thursday, May 26, 2011. The pre-audit and post-audit meetings were held at the Bristol Township Municipal Building in West Bristol, Pennsylvania. The audit team of 12 participants included representation from local, county, regional, state, and federal levels. See Appendix A for the full list of audit team members.

The pre-audit meeting-an overview of the study area and an examination of crash history-began at 8:00 AM. Next was the field visit for which the audit team drove through the corridor and examined conditions to identify safety and operational issues, including stops at key locations to discuss identified issues. After lunch, the team returned for the post-audit session where problems were defined and countermeasures considered.

Corridor Description and Analysis

Study Location

The study area consists of approximately 15 miles of I-95 within Bucks County, from the City of Philadelphia in the south to just north of Exit 49 at PA 322 (see Figure 1 on this page, and Figure 2 on the following page for a detailed study area map). This stretch of I95 is an important link between Philadelphia, its northern suburbs, and the TrentonPrinceton region in central New Jersey. Heavy volumes and recurring peak-period congestion are characteristic of this stretch, as it provides access to both downtown Philadelphia and Trenton for many Bucks County commuters. Additionally, it is a major artery for through traffic seeking destinations beyond the Delaware Valley.

Roadway Characteristics

Figure 1: Regional Setting

I-95 is classified as an urban interstate. The corridor study segment is a six-lane cross section between exits 35 and 40, and four lanes between exits 40 and the New Jersey State Line. The study segment has cable median barriers from Exit 40 north through Exit 49 and guide rail barriers along its length; shoulder width varies throughout the study area. The alignment of I-95 includes both horizontal and vertical curves.

Depending on the location, the speed limit is either 55 or 65 miles per hour. Within the study area there are seven interchanges that serve as key linkages to other important facilities, including: PA 63-Woodhaven Road, PA 132 (Street Road), PA 413, PA` 13, and US 1. There are also direct northbound and southbound connections to the Southeastern Pennsylvania Transportation Authority (SEPTA) Cornwells Heights Regional Rail Station located adjacent to the PA 63-Woodhaven Road interchange. This station is equipped with a park and ride facility.

Figure 2: Study Area

Traffic Volumes

Volume data from Traffic.com was used for the audit. The continually collected data was normalized by DVRPC to determine annual average daily traffic (AADT). Traffic volumes varied, with higher numbers of vehicles found toward the southern end of the study segment, closer to Philadelphia. Near I-95's interchange with PA 132-Street Road, approximately 47,000-49,000 vehicles traveled in each direction per day on average in 2009. This number dropped slightly from just over 50,000 vehicles in 2007. Further north, near the US 1 interchange, 28,000-30,000 vehicles traveled in each direction in 2009, down from 30,000-32,000 in 2007.

The elevated traffic levels from PA 63 southward can be attributed to Route 63's role in morning and evening commuting, and to its connection to US 1 and further to I-276 PA Turnpike via US 1. This interchange adds southbound traffic as commuters enter I-95 bound for Philadelphia and siphons off northbound traffic as others leave I-95 to reach suburban-area destinations.

Exit 40 provides access to the Burlington-Bristol Bridge. Traffic volumes dropped in the northbound direction beyond the interchange according to the 2009 traffic count. In the same area, approximately 20,000 cars were added in the southbound direction. Figure 3 on the following page depicts AADT volumes for the study corridor.

Operations Studies

DVRPC's Transportation Operations Master Plan (July 2009, \#09049) outlines a long-range vision of transportation operations for the DVRPC Region. This vision establishes a plan of where Intelligent Transportation Systems (ITS) infrastructure, emergency service patrols, and Incident Management Task Forces should be deployed in the region. Although many other operational considerations may apply to the I-95 Bucks County RSOA study corridor, the following specific operational strategies have been identified:

- Primary Coverage for ITS Infrastructure: full closed-circuit television (CCTV) camera coverage, variable message signs (VMS), incident detection, and travel-time detectors;
- Full Coverage for Emergency Service Patrol (ESP): 24 hours a day, seven days a week;
- Development of an IMTF; and
- Integrated Corridor Management (ICM) for Freeways: optimize travel in the corridor by coordinating traffic and transit on expressways and arterials.

The most recent Congestion Management Process (CMP) also addresses transportation operations within the Bucks County section of I-95 and is discussed later in this document.

Figure 3: Annual Average Daily Traffic Volumes

Incident Management

There are multiple entities responsible for incident management in the study corridor. The Pennsylvania State Police patrol the entire section of I-95 in Bucks County. Other emergency responders and service providers include the local fire departments, police (traffic safety) departments, emergency medical services departments, local towing companies, Bucks County Emergency Management Agency, PennDOT Maintenance Department, and the PennDOT Regional Traffic Management Center (RTMC).

PennDOT has established seven official detour routes for I-95 in Bucks County. These are generally interchange-to-interchange detours that include primary and secondary routes. Three of the routes utilize US 13, while the others use PA 413, US Business 1, or PA 332. Access to detour route information and maps can be gotten via the Interactive Detour Route Mapping (IDRuM) web-based application developed by DVRPC (www.idrum.us).

PennDOT also deploys Emergency Service Patrols (ESPs) on I-95 in Bucks County. The ESPs are a fleet of service trucks used to assist motorists, free of charge, when their vehicles have suffered a mechanical failure, flat tire, or a minor incident. ESP operators also provide vital assistance to emergency responders at incidents by removing debris from the highway, relocating the involved vehicles (if necessary), and using arrow boards for traffic control and scene safety. Along I-95 from Woodhaven Road to the Scudder Falls Bridge, there is one ESP truck that patrols during the morning peak hours (5:30 AM to 9:30 AM) and one truck that patrols during the evening peak hours (3:30 PM to 7:30 PM).

ITS Infrastructure

The 2009 American Recovery and Reinvestment Act (ARRA) included an ITS infrastructure deployment project in Bucks County on I-95, US 1, and PA 63-Woodhaven Road. The ARRA project included fiberoptic communication systems and video sharing through the Bucks County Emergency Management Agency, which includes video display in the 9-1-1 dispatch center and a video wall in the Emergency Operation Center. The ARRA project also provided CCTV cameras, VMS, and incident/travel-time detectors along the roadside to help determine travel times, which are then posted on the DMS signs

These ITS devices were operational as of spring 2011 (post audit). There are now 24 CCTV cameras that are evenly distributed along I-95, and thirteen VMSs. They are operated by PennDOT from the RTMC in King of Prussia, which serves the five southeastern counties in Pennsylvania. The operators monitor traffic conditions, assist in incident management, and disseminate traveler information to the public. It is staffed 24 hours a day, seven days a week.

CMP

The CMP is a systematic way to analyze the multimodal regional transportation network and manage congestion. The CMP identifies congested corridors, subdivides them into subcorridors, and recommends improvement strategies. The CMP analysis includes criteria for reducing congestion and increasing reliability.

The study segment of I-95 is within CMP Corridor 4, 1-95, Subcorridors 4A and 4B (of four total subcorridors), which includes all of l-95 through Pennsylvania between New Jersey and Delaware. Most of
the study area is low-density suburban development, a land use type that can induce traffic congestion even on local roads.

As mentioned earlier, the study corridor includes a commuter train line operated by SEPTA that connects Philadelphia with Trenton, New Jersey, and points beyond. It traverses the Delaware River over a railroad bridge that also serves important freight rail traffic in the region. Some appropriate strategies identified to manage congestion include the usage of ITS, ICM, incident management, and ITS improvements to aid traveler information and improve traffic flow.

Travel Time and Congestion

Travel times are dependent on the level of traffic congestion as well as distance traveled and road type. As congestion increases on a roadway, travel times increase. Data for this analysis was obtained from the I-95 Corridor Coalition's Vehicle Probe Project. It uses data gathered from global positioning system (GPS)enabled devices and other sources to provide historic and real-time speed and travel-time data.

For the I-95 RSOA, two summary measures were calculated using two years of weekday data. The results of the analysis are that travel-time delays due to congestion were relatively low in the study corridor compared to some other corridors in the Delaware Valley. However, there was congestion at the edges and just outside the study limits to the north and south (see Figure 4 and Figure 5).

The measures for the RSOA were calculated for 7:00 to 8:00 AM and 5:00 to 6:00 PM, as these were the peak hours based on a sample of typical traffic volume data. The analysis was done for weekdays in 2009 and 2010. The two measures are:

- Duration of Congestion, which represents the number of minutes during the peak hour that a roadway segment had congested conditions, is defined as speeds that fall below 70 percent of the reference speed. The reference speed is the historic average speed for that segment of road.
- Travel Time Index (TTI), represents how much the actual travel time exceeds the reference travel time. In other words, a TTI value of >1 means that it took longer to travel that road segment during the peak hour than it would have at a different time of day based on historic travel times. A larger TTI value means longer travel-time delay.

In the north and south congested areas, 10.1 to 19.5 minutes per hour were congested on average weekdays in 2009 and 2010. The amount of congestion tapered off toward the middle, with the exception of elevated congestion levels around the US 1 interchange in the morning. In the afternoon there were elevated travel times and congestion going in both directions in the south, while the road cleared in the north at this time. The congested areas have TTIs ranging from 1.26 to 1.5 , while the clear areas in the center of the study area have TTIs of 1.0 to 1.25 . Figure 4 depicts a section of the study corridor and its corresponding travel-time information.

Specific conclusions from the analysis are:

- During the AM peak hour, travel-time delays occur just south of the PA 63 interchange on I-95 southbound and just north of the PA 332 interchange on I-95 northbound. During the PM peak hour, moderate travel-time delays occur just south of the PA 63 interchange on both directions of I-95.
- The Duration of Congestion measure shows reduced speeds in the same places that travel-time delays appear. This measure, however, also shows some minor congestion extending to the south of the PA

Figure 4: Travel Time and Congestion - AM

Figure 5: Travel Time and Congestion - PM

- 332 interchange on I-95 northbound during the AM peak hour. Minor congestion also appears during the PM peak hour on I-95 southbound just north of PA 63 and just south of PA 332.
- Because I-95 is the principal north-south artery in southeastern Pennsylvania, congestion on it is a concern. High traffic volumes, especially at peak hours, mean congestion impacts many thousands of people. Data from the north and south ends of the study area show the most congestion. Congestion near the border of New Jersey can be explained partially by a bottleneck created by the Scudder Falls Bridge over the Delaware River. Congestion at the south end is due to the high volume of commuters traveling to and from Philadelphia.

Crash Findings

Chronology

According to the PennDOT crash database, there were 493 reportable crashes during the three-year study period of 2008-2010 along the study area section of I-95 in Bucks County. Reportable crashes in Pennsylvania are crashes that result in a fatality, injury, or require a vehicle be towed from the scene. A comprehensive summary of the corridor-wide crash data is shown in Appendix C. A similar number of crashes occurred in 2009 and 2010, while a significantly lower number occurred in 2008. There were 144 reportable crashes in 2008 (29 percent), 175 in 2009 (35 percent), and 174 in 2010 (35 percent). While the numbers varied by year, they were evenly distributed in both directions.

Crashes varied by month, day of the week, and time of day. By month, the fewest crashes occurred in April, May, and June (33 each), while December had the highest number (56). The remainder of the year followed a similar pattern, with the highest number of crashes generally occurring in autumn and winter. By weekday, Sunday had the fewest crashes, with 62 total average crashes. Friday had the highest number with 77 followed by Tuesday with 76 . The remaining days had average crash totals around 70 . Concerning time of day, crashes were more frequent during typical rush-hour periods, with a rise in crashes especially in the evening between 4:00 PM and 7:00 PM. Crashes were more common during the evening rush in the northbound lanes but more common during the morning rush in the southbound lanes.

Severity

In terms of severity, the crashes can be divided into three major classes: fatal, injury, and property damage-only. Of the total crashes, there were five fatal crashes that claimed five lives (three northbound and two southbound), 217 injury crashes that injured 295 people, and 271 property damage-only crashes. Of those injured, 15 were major, 31 moderate, 143 minor, and 106 considered "unknown severity." There were another 43 people affected whose condition was coded as "unknown if injured"; this number was excluded from the injured person's total.

Collision Type

Of the collision types, hit-fixed-object (HFO) crashes were predominant at 51 percent. The next two most frequent types were rear-end (27 percent) and same-direction sideswipe (8 percent) crashes. These three classifications accounted for approximately 86 percent of the total. Of the HFO crashes, 185 involved
hitting a guide rail, while 15 hit a guide rail end, and 15 hit the embankment. All of these collision types are common on limited-access facilities.

Road Surface, Weather, Light Condition

The majority of crashes occurred during ideal weather conditions, with 73 percent of the crashes taking place on dry road surface conditions and 78 percent during clear weather. Conversely, about 17 percent of the crashes occurred on wet road surfaces (snow, ice, etc. were much lower percentages) and 17 percent while raining. More crashes occurred during daylight than any other time of day, with 49 percent, while 13 percent occurred with street lights on, and the remainder were under dark conditions (38 percent). Daylightcondition crashes typically account for over 70 percent of the crash total. These unusual proportions may be related to the extended rush-hour periods, especially during the winter months.

PennDOT 2010 High Crash Locations

The Bucks County section of I-95 contained two roadway segments identified on the PennDOT 2010 HCL list-another reason for conducting an RSOA on this section. These high crash segments, which are both in the southbound direction, include the entire length of the roadway from interchange 37 (PA 132) to the Bucks County line with Philadelphia. Each of these segments was the site of a single fatal crash during the five-year analysis period used by PennDOT in determining the HCL list.

Segment Analyses

The corridor was also examined for crash concentrations by roadway segment and by direction of travel, due to it being a divided highway. The length of each segment is, on average, about one half of a mile. In geographic information systems (GIS), the crashes were summarized by segment and overlaid with major injury and fatal crash symbols to aid in identifying particularly problematic segments. Coinciding with the traffic volume and congestion trends, the crashes were most concentrated in the segments located in the vicinity of the Street Road interchange (Exit 37), and further south to the Philadelphia line. These concentrations also contain the two roadway sections identified on the PennDOT 2010 HCL list.

This data was then compared with an overlay of PennDOT's 2011 Crash Cluster analysis. From this, the most interesting discovery was the prevalence of HFO crash clusters in the corridor section between Exit 40 and the Philadelphia line (in addition to other cluster types of lower concentrations).

A more in-depth analysis was performed on two sections of I-95. The first stretch comprises I-95 northbound and southbound in the vicinity of the Street Road Interchange. It involves one interchange and contains four segments with crash rates between 1.58 and 2.38 crashes per million vehicle miles traveled. Combined, there were 95 crashes northbound and southbound during the analysis period. By collision type, 26 crashes were HFO and 18 were rear-end crashes in the northbound direction. One major injury was recorded but no fatalities. Southbound, there were 15 HFO crashes and 24 rear-end crashes. There were no fatalities, but three people had major injuries.

The second section comprises I-95 northbound between the Street Road and Bristol interchanges. This stretch is approximately one half of a mile long and contains one segment with a crash rate of 1.92. Within
this area there were 22 crashes during the study period. Of these crashes, 11 were HFO, five were rearend, and five were same-direction sideswipe. None of these crashes resulted in fatalities or major injuries.

2011 PennDOT Crash Clusters

Utilizing 2011 cluster data provided by PennDOT's Central Office, DVRPC mapped the crash clusters identified along the study corridor (see Appendix C for cluster maps). Six cluster types were represented in the study area:

- HFO crashes;
- hit-bridge crashes;
- hit-tree crashes;
- tractor-trailer crashes;
- snow-condition crashes; and
rain-condition crashes.
These clusters result from a database algorithm based on statewide standards. This information was presented to the RSOA team for consideration when discussing crash trends and operational issues. Each of the clusters is listed in the Findings and Recommendations tables found in the next chapter.

Findings and Recommendations

Priorities

The priorities meeting held one week following the audit event involved a small number of key audit team members and those PennDOT officials responsible for setting priorities for I-95 in Bucks County. At this meeting, each identified issue was reviewed and an appropriate action identified, including the associated time frame in which it was to be addressed. As with every RSA (or RSOA), the highest priority was placed on addressing safety issues that could be accomplished in the short term, using existing contracts and/or maintenance where possible. As a result of the hard work of those responsible, 49 issues were addressed in the year following the audit event, including construction items: pavement edge repairs, paint restriping, and replacement or repair of missing or damaged signs.

Also completed were additional investigations into crash clusters identified by PennDOT's Central Office. This was a necessary second step to better understand the circumstances that created the clusters because causation was not able to be determined during the audit event or at the priorities meeting. Details of each item are discussed in the following tables.

In addition to high-priority lower-cost improvements, the group also identified three longer-term high-priority items for the corridor:

- Establish an IMTF for the study corridor.
- Identify and establish dedicated enforcement locations in collaboration with the Pennsylvania State Police
- Extend the service hours of the ESP.

One of these items has already been accomplished. An IMTF to increase coordination of incident management efforts and share resources for the benefit of improved safety is now in place. This task force was established in April 2012 and currently meets on a quarterly basis. It is referred to by its members as the Bucks County (I-95/US 1) IMTF.

In several instances in the following tables, the road owner has responded that the identified issue will be addressed as part of the I-95 Corridor Reconstruction Project, currently underway. Due to the breadth and complexity of this effort, and because the Bucks County portion of I-95 is not slated for work to begin until 2030 or later, this RSOA was conducted as a proactive strategy to identify and address low-cost safety and operational issues, and to identify longer-term improvements that are better addressed as part of the larger effort.

Issues and Strategies Matrix

The following section summarizes the findings, potential strategies, and priorities for the Bucks County I-95 RSOA. The table for each section shows site-specific safety issues and corresponding potential strategies, general ratings for difficulty to implement, proposed safety and operational benefits, plus the road owner's response. Also provided is a corresponding aerial map indicating the relative location (where possible) of each identified issue. Any improvement that has been completed or addressed since the audit event is in orange text. Please note that the following abbreviations are used in the tables: short term (ST), long term (LT), Manual on Uniform Traffic Control Devices (MUTCD).

Regarding difficulty to implement, PennDOT uses the following general descriptions to characterize each of the three ratings:

- Low: can be accomplished through maintenance;
- Medium: requires use of existing or new contract, some engineering; funding may be readily available; and
- High: longer-term project, full engineering, may require right-of-way acquisition and new funding.

It is expected that implementing these recommendations will improve the overall safety and operations of the roadway. Note that potential strategies that call for further study do have a safety benefit in that they are the next step toward a more detailed and appropriate safety improvement. Given fiscal constraints, recommendations may have to be considered one at a time or in small groups. Being the road owner, PennDOT District 6-0 will use the findings of the RSOA as a guide for designing improvements to address these issues and will determine the priorities and implementation schedule, given limited safety funds.

PennDOT Crash Clusters

For this audit, PennDOT provided the latest available crash cluster information. DVRPC mapped these six clusters and presented them to the RSA team for consideration during the audit event and follow-up priorities meeting. During the summer of 2012, PennDOT conducted a Level Two evaluation for each cluster in the study area and reported back to DVRPC with the results. Of the six clusters, two were found in multiple sections along the study corridor: HFO crash cluster and tractor-trailer crash cluster. The results of the Level Two investigations for these clusters are described in detail below and referenced in the tables that follow. The remaining clusters, which are not found in multiple panels, are addressed within their respective tables.

- HFO cluster found in Panels 1A-5: Level Two evaluation revealed that driving too fast for conditions or speeding were contributing factors in most of the HFO cluster crashes, and the object hit was typically a guide rail. ST: Enhance enforcement. LT: Widen shoulder as part of I-95 Corridor Reconstruction Project.
- Tractor-trailer cluster found in Panels 1A and 2: Level Two evaluations revealed that driver error and speeding were contributing factors in most of the truck cluster crashes. No action at this time.

This page intentionally left blank.

Figure 6: Panel 1A (Philadelphia municipal line to Tennis Avenue)

Table 1: Panel 1A (Philadelphia municipal line to Tennis Avenue)

Figure 7: Panel 1 (interchange 35, Woodhaven Road and Cornwells Heights Park and Ride)

Table 2: Panel 1 (interchange 35, Woodhaven Road and Cornwells Heights Park and Ride)

Site-Specific Issue	Potential Strategy	Difficulty to Implement	$\begin{aligned} & \hline \text { Estimated } \\ & \text { Safety } \\ & \text { Benefit } \\ & \hline \end{aligned}$	Estimated Operational Benefit	Road Owner Response
11. Roadway pavement edge is intermittently deteriorated and edge line striping is deteriorated; 12. Ramp to PA 63 is site of rollover crashes, large trucks are especially susceptible;	11. Repave and restripe edge line; 12. ST : Install transverse rumble strips in advance of the curve; LT: Install electronic system for warning of speeds and roll over;	Medium Medium High	High High	Low High	11. Completed spring 2012; 12. Will be investigated in the fall of 2012;
13. HFO crash cluster identified along entire panel;	13. Evaluate cluster for causes (level two evaluation)	Low	Medium	High	13. Level two evaluation-ST: enhance enforcement, LT: widen shoulder as part of l-95 Corridor Reconstruction Project;
14. Snow condition crash cluster identified within panel;	14. Evaluate cluster for causes (level two evaluation);	Low	NA	NA	14. Level two evaluation: maintenance performed during snow conditions as needed, no further action;
15. Hit tree crash cluster location within this panel;	15. Evaluate cluster for causes (level two evaluation);	Low	NA	NA	15. Level two evaluation: all crashes occurred at infield location beyond clear zone, which already has with improved signage, no further action;
16. Shoulders are less than 8 feet wide.	16. Widen shoulder.	High	High	Medium	16. Corridor-wide issue that will be addressed as part of the I-95 Corridor Reconstruction Project.

This page intentionally left blank.

Figure 8: Panel 2 (interchange 37, PA 132 Street Road)

Table 3: Panel 2 (interchange 37, PA 132 Street Road)

Site-Specific Issue	Potential Strategy	Difficulty to Implement	Estimated Safety Benefit	Estimated Operational Benefit	Road Owner Response
9. Roadway pavement edge is intermittently deteriorated and edge line striping is deteriorated;	9. Repave and restripe edge line;	Low	High	Low	9. Completed spring 2012;
10. Shoulders are less than 8 feet wide;	10. Widen shoulder;	High	High	High	10. Corridor-wide issue that will be addressed as part of the I-95 Corridor Reconstruction Project;
11. Guide rail is too low along I-95 NB exit ramp to Street Road;	11. Investigate guide rail;	Medium	Medium	Low	11. Corridor-wide issue that will be addressed as part of the I-95 Corridor Reconstruction Project;
12. NB on-ramp from Street Road appeared short;	12. Investigate ramp length;	Medium	High	High	12. Will be included as part of TIP project grouping;
13. Along NB off-ramp to Street Road there were two sets of trailblazer signs (PA 132 and I-95) that were faded and nearly illegible;	13. Replace faded and missing signs;	Low	High	Low	13. Replaced in March of 2012;
14. HFO cluster identified along entire panel;	14. Evaluate cluster for causes (level two evaluation);	Low	Medium	High	14. Level two evaluation-ST: enhance enforcement, LT: widen shoulder as part of l-95 Corridor Reconstruction Project;
15. Tractor-trailer crash cluster location within this panel.	15. Evaluate cluster for causes (level two evaluation); Note: Work zone crashes may be due to previous Street Road construction causing ramp traffic to back up onto I-95 NB.	Low	NA	NA	15. Level two evaluation: no action at this time.

This page intentionally left blank.

Figure 9: Panel 3 (north of interchange 37, PA 132 Street Road)

Table 4: Panel 3 (north of interchange 37, PA 132 Street Road)

Figure 10: Panel 4 (north over Neshaminy Creek into Bristol Township)

Table 5: Panel 4 (north over Neshaminy Creek into Bristol Township)

Figure 11: Panel 5 (interchange 40, PA 413)

Table 6: Panel 5 (interchange 40, PA 413)

Site-Specific Issue	Potential Strategy	$\begin{gathered} \text { Difficulty } \\ \text { to } \\ \text { Implement } \\ \hline \end{gathered}$	Estimated Safety Benefit	Estimated Operational Benefit	Road Owner Response
Panel 5 SOUTHBOUND 1. Green sign sheeting is peeling on several roadway signs;	SOUTHBOUND 1. Repair or replace signs as needed;	Low	High	High	1. A contract is in place but may need to be rebid because of scheduling/performance issues, this will delay implementation;
2. Directional signage for off-ramp blocked by trees;	2. Remove foliage within maintenance contract;	Low	High	Low	2. Completed spring 2012;
3. Missing reflective markers on ramp from PA 413 to I-95 SB;	3. Reflective markers not required because high mast lighting in place;	Low	High	Medium	3. No action required;
4. Hit Fixed Object (HFO) cluster identified along the southern end of the panel;	4. Evaluate cluster for causes (level two evaluation);	Low	Medium	High	4. Level two evaluation-ST: enhance enforcement, LT: widen shoulder as part of I-95 Corridor Reconstruction Project;
5. At the I-95 SB off-ramp, trees blocking sight distance along the curve;	5. Remove foliage;	Low	High	Low	5. Completed spring 2012;
NORTHBOUND	NORTHBOUND				
6. Green sign sheeting is peeling on several roadway signs;	6. Repair or replace signs as needed;	Low	High	Low	6. A contract is in place but may need to be re-bid because of scheduling/performance issues, which will delay implementation;
7. There are exit signs for PA 413 at the two-mile and one-mile locations in advance of the exit, but additional exitonly signs are needed, and signs in the gore area are missing (team also described current signing as confusing);	7. Investigate PA 413 off-ramp signing and possibly add pavement markings sign improvements, and consider adding large single arrows on pedestal as part of signal permit where ramp meets PA 413 for clarity);	Medium	Medium	Medium	7. Exit is properly signed and striped, no action required (may be considered during the I-95/ Turnpike Interchange Project);
8. At ramp to PA 413 a sign is missing from right hand side to indicate end of expressway;	8. Install "Expressway Ends" sign and remove existing T-sign with flashers which creates a fixed object hazard;	Low	High	Low	8. Completed in May of 2012;
9. Ice on bridges presents safety issue;	9. Check for existing signs and if none, install current MUTCD compliant warning sign in advance of bridge;	Low	Medium	Low	9. District 6-0 will investigate in 2013;
10. HFO cluster identified along the southern end of the panel.	10. Evaluate cluster for causes (level two evaluation.	Low	Medium	High	10. Level two evaluation-ST: enhance enforcement, LT: widen shoulder as part of I-95 Corridor Reconstruction Project.

Figure 12: Panel 6 (north over I-276 into Middletown Township)

Table 7: Panel 6 (north over I-276 into Middletown Township)

	$\begin{array}{ll} 3 & 3 \\ 0 & 0 \\ \hline \end{array}$	30
	$\begin{array}{ll} \text { E } & 3 \\ \text { 务 } \\ \text { D } & 3 \end{array}$	$\begin{aligned} & \mathcal{E} \\ & \frac{3}{8} \\ & \frac{N}{\Sigma} \end{aligned}$
	$\begin{array}{ll} \text { E } & 3 \\ \text { 咅 } & 3 \\ \text { D } \end{array}$	0

Figure 13: Panel 7 (north of I-276 to Trenton Road)

Table 8: Panel 7 (north of I-276 to Trenton Road)

Site-Specific Issue	Potential Strategy	Difficulty to Implement	Estimated Safety Benefit	Estimated Operational Benefit	Road Owner Response
Panel 7 SOUTHBOUND/NORTHBOUND 1. At the Middletown turnaround (located on the southern end of Panel 7) the slope is uneven, making it difficult to pull out into traffic SB due to the grade differential between the opening and the travel lanes;	SOUTHBOUND/NORTHBOUND 1. ST: Add strip of asphalt (or other treatment) to ease transition entering SB, LT: Investigate turnaround for opportunities to adjust pavement and slope (CW);	Low/Medium (depending on maintenance priorities)	Low	Low	1. Will be investigated in the fall of 2012 or spring of 2013;
NORTHBOUND 2. I-95 NB delineators are knocked down (approx. 1 mile before Exit 44).	NORTHBOUND 2. Replace missing delineators.	Low	High	Medium	2. Will be addressed during 2013 fiscal year.

Figure 14: Panel 8 (Trenton Road north to interchange 44, US 1)

Table 9: Panel 8 (Trenton Road north to interchange 44, US 1)

Site-Specific Issue	Potential Strategy	Difficulty to Implement	Estimated Safety Benefit	Estimated Operational Benefit	Road Owner Response
Panel 8 NORTHBOUND 1.Damaged guide rail between Durham Road and the Mill Creek Bridge along NB side.NORTHBOUND 1. Repair damaged guide rail.	Low	Medium	Low	1.Guide rail repaired under maintenance contract during 2012.	

Figure 15: Panel 9 (north under PA 123 Old Lincoln Highway overpass)

Table 10: Panel 9 (north under PA 123 Old Lincoln Highway overpass)

		 ,
	3	3
	$\begin{aligned} & E \\ & \frac{E}{8} \\ & \frac{D}{\Sigma} \end{aligned}$	
	$\begin{aligned} & E \\ & \frac{E}{8} \\ & \frac{0}{\Sigma} \end{aligned}$	${ }^{3}$

Figure 16: Panel 10 (interchange 46, US 1 Lincoln Highway)

Table 11: Panel 10 (interchange 46, US 1 Lincoln Highway)

				เึ
	$\begin{array}{ll} \text { 品 } \\ \text { I } \end{array}$	$\begin{aligned} & E \\ & \frac{5}{8} \\ & \frac{N}{S} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \frac{0}{3} \\ & \frac{D}{2} \end{aligned}$	${ }_{0}^{3}$
	$\begin{array}{ll} \text { § } \\ \text { I } \\ \text { In } \end{array}$	$\begin{aligned} & \text { 통 } \\ & \frac{0}{8} \\ & \hline \end{aligned}$	$\stackrel{\text { No }}{\substack{\text { I }}}$	$\begin{aligned} & \text { E } \\ & \frac{3}{0} \\ & \stackrel{1}{2} \end{aligned}$
	$\begin{array}{ll} \text { § } & E \\ \text { B } & \frac{0}{8} \\ \text { I } & \end{array}$	3	3	3

Figure 17: Panel 11 (north of interchange 46, US 1, into Lower Makefield Township)

Table 12：Panel 11 （north of interchange 46，US 1，into Lower Makefield Township）

$\begin{aligned} & \ddot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { む } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
	3	${ }^{3}$
	$\begin{aligned} & \text { 员 } \\ & \text { 而 } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \frac{5}{8} \\ & \frac{0}{\Sigma} \end{aligned}$
	3	$\begin{aligned} & E \\ & \frac{E}{8} \\ & \frac{0}{\Sigma} \end{aligned}$

Figure 18: Panel 12 (north over Yardley-Langhorne Road)

Table 13: Panel 12 (north over Yardley-Langhorne Road)

Road Owner Response	
	0
	$\begin{aligned} & E \\ & \frac{5}{8} \\ & \frac{0}{\Sigma} \end{aligned}$
	E 5 0 0 0 0

Figure 19: Panel 13 (interchange 49, PA 332 Newton-Yardley Road)

Table 14: Panel 13 (interchange 49, PA 332 Newton-Yardley Road)

Table 15: Corridor-Wide Issues and Strategies

Conclusions

The safety and operational recommendations identified during the audit and documented in this report were designed to improve safety and mobility for users of the highway. Many of the strategies identified can be implemented through routine maintenance. The full impact of the improvement strategies will be realized when they are combined, but time and budget constraints will dictate the implementation schedule.

Several of the crash cluster locations discussed during the RSOA process have been investigated by PennDOT's District 6-0 office since the audit event. These are examples of identified issues that required further study, for which District 6-0 conducted Level Two safety evaluations. HFO clusters-the most commonly found cluster in the study area-were identified in six of the 14 panels from the southern end of the study area uninterrupted through to Exit 40 (Bristol), in both northbound and southbound directions. District 6-0 concluded that driving too fast for conditions or speeding were contributing factors in these cluster crashes, and the object hit was typically a guide rail. A corridor-wide engineering solution to widen the shoulders to increase recovery time is recommended for consideration during the I-95 Corridor Reconstruction Project. Increased enforcement was recommended to slow drivers through this section as a short-term improvement.

Similar to the Delaware County I-95 RSOA, many short-term improvements have been implemented since the audit event, and additional analyses have been performed. Low-cost items such as foliage removal for improved sight distance, and pavement edge repair and edge line restriping, have been completed by county maintenance or through existing maintenance contracts. A high level of coordination between PennDOT offices was the key to expediting these improvements.

Longer-term engineering improvements may require new contracts and a more comprehensive planning and engineering approach. Some of these items have been recommended for consideration under the I-95 Corridor Reconstruction Project.

Engineering strategies alone will not eliminate the traffic safety issues identified along the study corridor. Education, with support from a targeted enforcement campaign, is an effective approach for addressing the driver behaviors that lead to crashes. Policy or legislative actions can provide the legal weight needed to motivate people to be safer, more conscientious drivers. Thus, employing a multi-pronged approach and engaging the appropriate stakeholders will be the most effective courses of action to further advance the goal of improved safety on I-95 in Bucks County.

APPENDIX A

Audit Team

Name	Agency
Sgt. Chris Burns	Bristol Township Police Department
Richard G. Brahler	Bucks County Planning Department
William D. Rickett	Bucks County Transportation Management Assoc.
Kevin Murphy	DVRPC: Safety and Congestion Management
Chris King	DVRPC: Transportation Operations Management
Mike Castellano	FHWA: Pennsylvania
Carmine Fascina	FHWA: Philadelphia
Lorraine Ryan	PennDOT: District 6-0 Maintenance
Ron Notar	PennDOT: District 6-0 Maintenance Project Coordinator
Calvin Morrison	PennDOT: District 6-0 Maintenance, Bucks County
Larry Bucci	PennDOT: District 6-0 Traffic
Lou Belmonte	PennDOT: District 6-0 Traffic
Manny Anastasiadis	PennDOT: District 6-0 Traffic Freeway Management
Sgt. Brian lanuzzi	Pennsylvania State Police: Trevose

[^0]APPENDIX B
Crash Data

I-95 NB SEGMENT 340-490
Print Date: 4/14/2011:
MPORTANT: This traffic engineering and safety study is confidential
pursuant to 75 Pa . C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be

I－95 SB（SEGMENTS 341－491） USER ID／QUERY ID： c－ehe／PC20110414001

	SUN	MON	TUE	WED	THR	FRI	SAT	
CRASHES	27	31	36	36	40	35	40	245
PCT	11%	13%	15%	15%	16%	14%	16%	100%

245 DRIVERACTIONS ACTIONS PCT \begin{tabular}{llll}
\hline NO CONTRIBUTING ACTION \& 154 \& 36%

\hline TOO FAST FOR CONDITION \& 108 \& 25%

\hline

\hline TOO FAST FOR CONDITION \& 108 \& 25%

\hline
\end{tabular}

 AFFECTED PHYSICAL COND $\quad 13$| 3% |
| :--- | :--- | :--- |

 SPEEDING
SUDDEN SLOWING／STOP
IMPROPER ENTRANCE HWY OTHERS

NONE	178	71%
OTHER WEATHER COND	24	10%

 UNKNOWN ANIMAL IN RDWY
WINDY CONDITIONS

OTHERS OTHERS | WEATHER | | |
| :--- | ---: | ---: |
| | CRASHES | PCT |
| CLEAR | 174 | 71% |
| RAIN | 61 | 25% |
| SNOW | 8 | 3% |
| RAIN／FOG | 1 | 0% |
| UNK | 1 | 0% |
| TOTAL | 245 | 100% |
| | | |
| | | |
| | | | \square ｜ －

$\frac{\angle 乙}{\text { Əヨロ }}$ $\begin{array}{rll}\text { Date Range：} & 1 / 1 / 2008 \text { to } 12 / 31 / 2010 \\ \underline{\text { Area of }} & \text {（In County } 09 \text { On State Route 0095（S）Between Segment } 0341 \text { Offset } 162 \text { and Segment } 0491 \text { Offset 8）}\end{array}$ Interest：

$\begin{array}{lrrrr}\text { L } & \text { AUG } & \text { SEP } & \text { OCT } & \text { NOV }\end{array}$

N	JUL

$\begin{array}{llllll} & 0 \downarrow & 8 & 2 & 8 & 1 し \\ \varepsilon \downarrow & \text { Zl } & \text { Lᄂ } & 0 \downarrow & 60 & 80\end{array}$

4%	
VEL	
2	1%
5	2%

ILLUMINATION		
	CRASHES	PCT
DAYLIGHT	109	44%
DARK	82	33%
STREET LIGHTS	38	16%
DUSK	8	3%
DAWN	5	2%
OTHER	2	1%
UNK LIGHTING	1	0%
TOTAL	245	100%

VEHICLE TYPE			ROAD CONDITION		
	VEHICLES	PCT		HES	PCT
AUTOMOBILE	253	67\％	DRY	166	68\％
SUV	49	13\％	WET	52	21\％
SMALL TRUCK	27	7\％	WATER	19	8\％
LARGE TRUCK	20	5\％	ICE PATCH	3	1\％
VAN	14	4\％	SLUSH	3	1\％
UNK VEHICLE	8	2\％	SNOW	2	1\％
MOTORCYCLE	5	1\％	TOTAL	245	100\％
BUS	1	0\％	TOTAL		
CONSTRUCTION	1	0\％			
TOTAL	378	100\％			

I-95 SB (SEGMENTS 341-491)
Print Date: 4/14/2011:
disclosed or used in litiaation without written nermission from PennDOT.

Date Range: $1 / 1 / 2008$ to $12 / 31 / 2010$
Area of (In County 09 On State Route 0095(P) Between Segment 0340 Offset 62 and
Interest: Segment 0490 Offset 33)

CRASH EVENTS (number of crashes)				
	2008	2009	2010	TOTAL
HIT_FIXED_OBJECT	45	53	33	131
HIT_TREE_SHRUB	2	6	6	14
HIT_POLE	2	0	0	2
HIT_GDRAIL	42	41	32	115
HIT_GDRAIL_END	3	5	2	10
HIT_BRIDGE	0	1	2	3
HIT_EMBANKMENT	4	4	3	11
HIT_BARRIER	6	9	4	19
DEER_RELATED	1	3	4	8
REAR_END	20	20	28	68
HO_OPPDIR_SDSWP	0	0	0	0
SV_RUN_OFF_RD	48	55	39	142
OVERTURNED	7	6	9	22
VEHICLE_FAILURE	4	4	6	14
PHANTOM_VEHICLE	1	2	3	6
PSP_REPORTED	83	84	80	247

DRIVER / PERSON (number of crashes)				
	2008	2009	2010	TOTAL
DRINKING_DRIVER	8	9	7	24
ALCOHOL_RELATED	8	9	7	24
UNBELTED	10	12	8	30
AGGRESSIVE_DRVG	51	51	44	146
SPEEDING	5	3	3	11
NHTSA_AGG_DRIVING	3	5	6	14
SPEEDING_RELATED	28	33	28	89
TAILGATING	4	3	9	16
CURVE_DVR_ERROR	1	2	1	4
DISTRACTED	8	7	4	19
FATIGUE_ASLEEP	4	4	6	14
NO_CLEARANCE	1	0	0	1
UNLICENSED	1	0	0	1
CELL_PHONE	0	1	1	2
RUNNING_RED_LT	0	0	0	0
RUNNING_STOP_SIGN	0	0	0	0
UNDERAGE_DRNK_DRV	1	1	1	3
DRIVER_16YR	1	1	0	2
DRIVER_17YR	2	0	0	2
DRIVER_65_74YR	2	4	9	15
DRIVER_75PLUS	2	1	5	8
PEDESTRIAN	0	0	0	0

Area of (In County 09 On State Route 0095(P) Between Segment 0340 Offset 62 and Interest: Segment 0490 Offset 33)

ROAD / WEATHER (number of crashes)				
	2008	2009	2010	TOTAL
NON_INTERSECTION	80	81	74	235
INTERSECTION	3	4	6	13
SIGNALIZED_INT	0	0	0	0
UNSIGNALIZED_INT	3	4	6	13
STOP_CONTR_INT	1	0	1	2
CROSS_MEDIAN	0	0	0	0
SHLDR_RELATED	0	0	0	0
WORK_ZONE	1	0	11	12
LIMIT_65MPH	0	0	0	0
WET_ROAD	11	12	11	34
ICY_ROAD	1	0	1	2
	0	8	4	12
SNOW_SLUSH_ROAD	30	40	35	105
ILLUMINATION_DARK	30			

SEVERITY (number of crashes)

	2008	2009	2010	TOTAL
FATAL	0	2	1	3
FATAL_OR_MAJ_INJ	2	3	3	8
INJURY	42	32	34	108
PROPERTY_DAMAGE_ONLY	41	53	45	139

IMPORTANT: This traffic engineering and safety study is confidential pursuant to
75 Pa. C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be disclosed or used in litigation without written permission from PennDOT.

IMPORTANT: This traffic engineering and safety study is confidential pursuant to
75 Pa . C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be disclosed or used in litigation
without written permission from PennDOT.

> CDART - CRASH FLAG SUMMARY REPORT (10-06)

NOTES:

The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:
$2 \quad 2011$ crash records are incomplete
Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include this year in queries with caution.
3 Complete data years
Complete records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010

REPORT PARAMETERS:

Query ID: $\underline{\text { User ID: }}$	DVRPC20110512001 c-ehe
Area of Interest:	(In County 09 On State Route 0095(P) Between Segment 0340 Offset 62 and Segment 0490 Offset 33)
Date Range:	$1 / 1 / 2008$ to $12 / 31 / 2010$

Criteria:

Date Range: $1 / 1 / 2008$ to $12 / 31 / 2010$
Area of (In County 09 On State Route 0095(S) Between Segment 0341 Offset 162
Interest: and Segment 0491 Offset 8)

CRASH EVENTS (number of crashes)						
	2008	2009	2010	TOTAL		
HIT_FIXED_OBJECT	30	49	41	120		
HIT_TREE_SHRUB	6	6	5	17		
HIT_POLE	0	0	0	0		
HIT_GDRAIL	22	28	20	70		
HIT_GDRAIL_END	2	2	1	5		
HIT_BRIDGE	0	0	1	1		
HIT_EMBANKMENT	1	1	2	4		
HIT_BARRIER	8	16	19	43		
DEER_RELATED	3	7	6	16		
REAR_END	13	24	29	66		
HO_OPPDIR_SDSWP	0	1	0	1		
SV_RUN_OFF_RD	35	53	45	133		
OVERTURNED	9	3	5	17		
VEHICLE_FAILURE	5	7	3	15		
PHANTOM_VEHICLE	3	1	1	5		
PSP_REPORTED	61	87	94	242		

DRIVER / PERSON (number of crashes)				
	2008	2009	2010	TOTAL
DRINKING_DRIVER	4	3	15	22
ALCOHOL_RELATED	4	3	15	22
UNBELTED	2	10	8	20
AGGRESSIVE_DRVG	48	68	53	169
SPEEDING	3	2	8	13
NHTSA_AGG_DRIVING	6	3	7	16
SPEEDING_RELATED	36	44	35	115
TAILGATING	4	10	6	20
CURVE_DVR_ERROR	0	0	1	1
DISTRACTED	3	6	4	13
FATIGUE_ASLEEP	0	0	2	2
NO_CLEARANCE	0	0	0	0
UNLICENSED	0	0	3	3
CELL_PHONE	0	0	0	0
RUNNING_RED_LT	0	0	0	0
RUNNING_STOP_SIGN	0	0	0	0
UNDERAGE_DRNK_DRV	0	0	1	1
DRIVER_16YR	1	0	0	1
DRIVER_17YR	1	1	1	3
DRIVER_65_74YR	3	4	6	13
DRIVER_75PLUS	,	3	0	4
PEDESTRIAN	0	1	0	1

IMPORTANT: This traffic engineering and safety study is confidential pursuant to
75 Pa. C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be disclosed or used in litigation without written permission from PennDOT.

Area of (In County 09 On State Route 0095(S) Between Segment 0341 Offset 162

ROAD / WEATHER (number of crashes)

ROAD / WEATHER (number of crashes)				
	2008	2009	2010	TOTAL
NON_INTERSECTION	54	79	76	209
INTERSECTION	7	11	18	36
SIGNALIZED_INT	0	0	0	0
UNSIGNALIZED_INT	7	11	18	36
STOP_CONTR_INT	0	1	1	2
CROSS_MEDIAN	0	0	0	0
SHLDR_RELATED	0	0	0	0
WORK_ZONE	0	4	2	6
LIMIT_65MPH	0	1	0	1
WET_ROAD	16	25	11	52
ICY_ROAD	0	0	3	3
SNOW_SLUSH_ROAD	1	2	2	5
ILLUMINATION_DARK	28	44	49	121

SEVERITY (number of crashes)

	2008	2009	2010	TOTAL
FATAL	0	1	1	2
FATAL_OR_MAJ_INJ	2	2	3	7
INJURY	24	36	35	95
PROPERTY_DAMAGE_ONLY	37	53	58	148

IMPORTANT: This traffic engineering and safety study is confidential pursuant to
75 Pa . C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be disclosed or used in litigation without written permission from PennDOT.

I-95 SB (SEGMENTS 341-491)

IMPORTANT: This traffic engineering and safety study is confidential pursuant to
75 Pa . C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be disclosed or used in litigation
without written permission from PennDOT.

> CDART - CRASH FLAG SUMMARY REPORT (10-06)

NOTES:

The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:

22011 crash records are incomplete
Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include this year in queries with caution.
3 Complete data years
Complete records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010

REPORT PARAMETERS:

Query ID: DVRPC20110414001
User ID: c-ehe
Area of Interest: (In County 09 On State Route 0095(S) Between Segment 0341 Offset 162 and Segment 0491 Offset 8)

Date Range: $\quad 1 / 1 / 2008$ to $12 / 31 / 2010$

Criteria

I-95 NB SEGMENT 340-490
Sorted by County, Route, Number of Crashes

NOTES:

The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:
$\stackrel{\infty}{\infty}$
Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include
this year in queries with caution.
this year in queries with caution.
3 Complete data years
Complete records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
DELTA is calculated as CRASH RATE / HOMOG. RATE (5YR) and is an indicator of how the actual crash rate compares to average Statewide crash
 when query date range is not equal to 5 years.

* SPECIAL NOTE :

QUERY PARAMETERS:

Date Range: $1 / 1 / 2008$ to $12 / 31 / 2010$
Criteria: STATE ROAD

Sorted by County, Route, Number of Cras
Date Range: $1 / 1 / 2008$ to $12 / 31 / 2010$
$\begin{aligned} \text { Area of } & \text { (In County } 09 \text { On State Route 0095(S) Between Segment } 0341 \text { Offset } 162 \text { and } \\ \text { Interest: } & \text { Segment } 0491 \text { Offset 8) }\end{aligned}$ Interest: Segment 0491 Offset 8)

DISTRICT COUNTY

$0-0000-000000000000000000000000$

능 ㄴㅇㅇㅇ

0000000000000000000000000000000
$0-0000-000000000000000000000000$

00 に MOFOOOO000 000000000000000000

I-95 SB (SEGMENTS 341-491)
Sorted by County, Route, Number of Crashes

NOTES:

The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:
$\stackrel{\text { D }}{\stackrel{\text { L }}{\Delta}} \quad 2011$ crash records are incomplete
Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include this year ques

3 Complete data years 2008, 2009, 2010

* SPECIAL NOTE :

DELTA is calculated as CRASH RATE / HOMOG. RATE (5YR) and is an indicator of how the actual crash rate compares to average Statewide crash
 when query date range is not equal to 5 years.

Note: This report includes data for state roads only.
Area of Interest: (In County 09 On State Route 0095(S) Between Segment 0341 Offset 162 and Segment 0491 Offset 8)
Criteria: STATE ROAD

litigation without written permission from PennDOT

QUERY PARAMETERS:

Query ID: $\underline{0620110524006}$
Ibucci

> Date Range: $1 / 1 / 2008$ to $12 / 31 / 2010$

I-95 SB Crash Details by Segment (341-491)

195 sb segment 351

195 sb segment 351
Print Date: 5/6/2011:
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)

NOTES:

2011 crash records are incomplete

Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include this year in queries with caution.

Complete records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
REPORT PARAMETERS: $\underline{\text { Query ID: }}$
$\underline{\text { User ID: }}$
Area of Interest:

Date Range:
 1/1/2008 to 12/31/2010
 Criteria:

c-ehe
Area of Interest: (In County 09 On State Route 0095(S) Between Segment 0351 Offset 441 and Segment 0351 Offset 2460)
The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:
2
I95 NB Segment 354
USER ID/QUERY ID: c-ehe/PC20110506001
195 NB Segment 354
Print Date: 5/6/2011:
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)

> NOTES:
2011 crash records are incomplete
the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the
ent. Include this year in queries with caution.
e records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003,
05, 2006, 2007, 2008, 2009, 2010
QARAMETERS:
Query ID: $\quad \begin{aligned} & \text { UVRPC ID: } \\ & \text { Area of Interest: } \\ & \text { (In County } 09 \text { On State Route 0095(P) Between Segment } 0354 \text { Offset } 38 \text { and Segment } 0354 \text { Offset 2625) } \\ & \text { Date Range: } \\ & \text { Criteria: }\end{aligned} \quad 1 / 1 / 2008$ to $12 / 31 / 2010$

SEGMENT 360 (HIGH DELTA)

SEGMENT 360 (HIGH DELTA)
Print Date: 5/25/2011:
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)
NOTES:
202011 crash records are incomplete

B-22

I-95 SB Segement 361
Print Date: 5/6/2011:
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)

NOTES:

Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include this year in queries with caution.

Complete records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
REPORT PARAMETERS: $\underline{\text { Query ID: }}$
$\underline{\text { User ID: }}$
Area of Interest:

[^1](In Cour
Area of Interest: (In County 09 On State Route 0095(S) Between Segment 0361 Offset 477 and Segment 0361 Offset 2397)
1 The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:
Segment 365 (High Delta)

Segment 365 (High Delta)
Print Date: 5/25/2011:
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)

NOTES:

2011 crash records are incomplete
the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the
e data years
e records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003,
$\begin{aligned} & \text { Query ID: 2006, 2007, 2008, 2009, } 2010 \\ & \text { User ID: } \\ & \text { Area of Interest: } \\ & \text { C-ehe } \\ & \text { (In County } 09 \text { On State Route 0095(S) Between Segment } 0365 \text { Offset } 7 \text { and Segment } 0365 \text { Offset 2512) } \\ & \underline{\text { Date Range: }} \\ & \text { Criteria: }\end{aligned} \quad 1 / 1 / 2007$ to $12 / 31 / 2010$

The data available in this application is dynamic and should be used with care. Please take note of the following data alerts:
omplet
EPORT P
$\cdots \quad$ m
I95 NB Segment 0374

195 NB Segment 0374
Print Date: 5/6/2011:
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)

NOTES:

2011 crash records are incomplete

Segments 330-340
Print Date: 5/25/2011:
pursuant to 75 Pa . C.S. $\S 3754$ and 23 U.S.C. $\S 409$ and may not be
disclosed or used in litiaation without written nermission from PennDOT.
CDART - CRASH SUMMARY REPORT (09-06)
NOTES:
2011 crash records are incomplete

Segments 331-341

Segments 331-341
Print Date: 5/25/2011:
pursuant to 75 Pa. C.S. §3754 and 23 U.S.C. $\S 409$ and may not be

CDART - CRASH SUMMARY REPORT (09-06)

NOTES:

Data for the current year, 2011, is not fully represented in CDART. Crashes will be added for this year as they are made available to the Department. Include this year in queries with caution.

Complete data years

Complete records of reportable crashes are available in CDART for the following years: 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
REPORT PARAMETERS
Query ID:
$\underline{\text { User ID: }}$
Area of Interest:
$\begin{array}{ll}\text { (In County } 09 \text { On State Route 0095(S) Between Segment } 0331 \text { Offset } 360 \text { and Segment } 0341 \text { Offset 370) } \\ \text { Date Range: } & 1 / 1 / 2007 \text { to } 12 / 31 / 2010 \\ \text { Criteria: }\end{array}$
c-ehe
DVRPC20110525001
B -32

```
APPENDIX C
```


Presentation

- RSOA Background
- Purpose and Need
- Background Data and Maps
- ITS, CMP and Travel Time Index Analysis
- Crash Analysis and Crash Maps

95 DVRPC - Delaware Valley Regional Planning Commission

\rightarrow Metropolitan Planning Organization of the Delaware Valley serving 9 counties:
\rightarrow Bucks, Chester Delaware, Montgomery, Philadelphia
\rightarrow Burlington, Camden, Gloucester, Mercer
\rightarrow Transportation Improvement Program (TIP)
\rightarrow DVRPC facilitates regional body to oversee allocation of federal transportation funds

95
 The Aim of an RSOA is to Answer the Following Questions...

\rightarrow What elements of the road may present safety and operations concerns
\rightarrow To what extent?
\rightarrow To which road users?
\rightarrow Under what circumstances?
\rightarrow What opportunities exist to eliminate or mitigate identified safety and operations concerns?

95
 I-95 Bucks County RSOA Corridor Selection

\rightarrow Why I-95 in Bucks County?
\rightarrow Two segments from 2010 Dist 6-0 high crash list
\rightarrow Two fatal crashes - two people killed
\rightarrow Transportation operations elements
\rightarrow Collaboration between:
\rightarrow PennDOT District 6-0
\rightarrow FHWA
\rightarrow DVRPC Office of Safety and Congestion Management
\rightarrow DVRPC Office of Transportation Operations Management

(95)
 DVRPC: RSA + Operations = RSOA

\rightarrow DVRPC has conducted many RSAs throughout region
\rightarrow Conducted US 202, Section 200 Transportation Operations
Audit - December 2009
\rightarrow Conducted on limited access highway
\rightarrow Very similar process to RSA
\rightarrow Created a unique opportunity for operations to be incorporated into the RSA process
\rightarrow Successfully conducted I-95 RSOA for I-95, Delaware County in 2010

Pre-Audit Meeting - 8:00 AM
\rightarrow What are Road Safety Audits (RSA) - video
\rightarrow Analyze and discuss crash data, operations, and other safety issues
\rightarrow Field Visit
\rightarrow Windshield survey of the corridor to identify safety issues and examine conditions
\rightarrow Lunch
\rightarrow Post Audit Meeting - After Lunch
\rightarrow Define problems
\rightarrow Brainstorm improvement ideas
\rightarrow Wrap up by 5 PM
\rightarrow Priorities Meeting - Next Week
\rightarrow Thursday June 2, 2011 - PennDOT District 6-0

What is a Road Safety Audit?

\rightarrow Federal Highway Administration Road Safety Audit Video

95) History of RSAs

\rightarrow First used in the United Kingdom in 1980s
\rightarrow Australia and New Zealand have used RSAs since the 1990s
\rightarrow Formal practice in the United States began in 1997 when the Federal Highway Administration sponsored a pilot program in 13 states

95 RSOA Benefits

\rightarrow Adaptable to local needs and conditions
\rightarrow Short term
\rightarrow Recommendations can be implemented in small stages as time and resources permit
\rightarrow Can be performed during any stage of a project
\rightarrow Collaborative efforts from a team with members of varying backgrounds and expertise

95
 Audit Team

\rightarrow FHWA Harrisburg, Philadelphia
\rightarrow PennDOT District 6-0 Traffic - Safety
\rightarrow PennDOT District 6-0 Traffic - Freeway Management
\rightarrow PennDOT District 6-0 Maintenance, Bucks County
\rightarrow Bucks County Planning Commission
\rightarrow Bristol Township Police Dept.
\rightarrow Middletown Township of Police Dept.
\rightarrow Pennsylvania State Police
\rightarrow Bucks County TMA
\rightarrow DVRPC: Safety, Congestion Mngmnt., and Operations

Safe 95

1.S5 BUGKS COUNTY RSOA -
\rightarrow Led by Representative David Steil
\rightarrow Coalition of municipalities, law enforcement agencies, and emergency service personnel
\rightarrow Publishes an 'Interstate 95 Safety Guide' Brochure
\rightarrow Safe 95 Partners:
\rightarrow State Rep. Gene DiGirolamo
\rightarrow Bensalem Township Police
\rightarrow Bristol Township Police
\rightarrow Bucks County Planning Commission
\rightarrow Delaware River Joint Toll Bridge Commission
\rightarrow DVRPC
\rightarrow Lower Makefield Police
\rightarrow Middletown Township Police
\rightarrow PennDOT District 6-0
\rightarrow Pennsylvania Public Utilities Commission
\rightarrow Pennsylvania State Police
\rightarrow TMA Bucks
\rightarrow Upper Makefield Police

CTBSME
 PennDOT 2010 High Crash Locations

Bureau of Highway Safety and Traffic Engineering (BHSTE)

\rightarrow Identified locations with most severe highway safety needs
\rightarrow At least 5 fatal or major injury crashes over 5 years (2006-2010)
$\rightarrow 5000 \mathrm{ft}$ segment or 500 ft radius intersection
List of top 322 crash locations statewide, 164 in Dist 6-0

Goal for District 6-0 is to address as many of the 164 locations as possible by 2012, based on priority ranking

2010 High Crash Locations on I-95: Bucks County

State Rank	County	Route	Total Fatal + Major Injury Crashes	Fatal Count	Injury Count
217	Bucks	$\mathrm{I}-95$	10	1	15
293	Bucks	$\mathrm{I}-95$	6	1	8

(95) 2008 High Crash Locations on l-95: Bucks County

State Rank	County	Route	Total Fatal + Major Injury Crashes	Fatal Count
98	Bucks	$\mathrm{I}-95$	16	5
367	Bucks	$\mathrm{I}-95$	5	1
284	Bucks	8005	5	3

Transportation Operations Elements

Chris King
Office of Transportation Operations Management

95 DVRPC Transportation Operations Master Plan

\rightarrow Overview - Developed July 2009
\rightarrow Operations Goals \& Objectives
\rightarrow Transportation Operations Vision
\rightarrow Projects \& Programs
\rightarrow Financial Plan
\rightarrow Transportation Operations Vision
\rightarrow ITS Infrastructure - l-95 identified for primary coverage
\rightarrow Emergency Service Patrols - I-95 identified for full coverage
\rightarrow Incident Management Task Forces - I-95 / PTC corridor identified
\rightarrow Integrated Corridor Management Plan - I-95 is potential corridor
\rightarrow Regional Communications Network

95 Operational Characteristics

\rightarrow Functional classification
\rightarrow Urban Interstate
\rightarrow Speed limit
$\rightarrow 55-65 \mathrm{mph}$
\rightarrow Interchanges
$\rightarrow 7$ interchanges

\rightarrow Key linkages with PA 63, Street Road, PA 413, US 13, US 1
\rightarrow Direct SB connection to SEPTA Cornwells Heights Regional Rail Station / Park \& Ride

(95) Operational Characteristics

\rightarrow Cross Section Geometry
$\rightarrow 3$ lanes by direction between exits $35-40$
$\rightarrow 2$ lanes by direction between exits 40-45
\rightarrow Cable and guide rail barriers
\rightarrow Horizontal and vertical curves
\rightarrow Intermittent shoulders

(95) Average Annual Daily Traffic

$\rightarrow 1-95$ Section ITB
\rightarrow ITS Devices on I-95, US 1, in Bucks County and on PA 63
(Woodhaven Road)
\rightarrow Project includes:
\rightarrow Fiber optic communication systems
\rightarrow CCTV Cameras
\rightarrow Dynamic Message Signs
\rightarrow Travel Time Information (Tag Readers)
\rightarrow Incident Detection (Vehicle Detectors)
\rightarrow Project Schedule
\rightarrow Operational Spring 2011

ITS Infrastructure

(25) Bean rimemanaw

 Ias bucks comive rso

95 Traffic Management Systems

195 aUGKS COUNTY RSOA

\rightarrow PennDOT District 6 - Regional Traffic Management Center

(93) nemen waspanan

\rightarrow PA State Police - Trevose Barracks patrols I-95
\rightarrow Bucks County Emergency Management Agency
\rightarrow Local Fire Departments
\rightarrow Local Police Departments
\rightarrow Traffic Safety
\rightarrow Local EMS Departments
\rightarrow PennDOT TMC
\rightarrow Local Towing Companies

05 PennDOT Emergency Service Patrol (ESP)

\rightarrow Zone 95-4: Covers from Woodhaven Rd to the Scudder Falls Bridge

$\rightarrow 1$ Truck equipped with tow dollies that can tow all wheel drive vehicles
\rightarrow Operates Monday to Friday $\rightarrow 5: 30$ AM to 09:30 AM
$\rightarrow 3: 30$ PM to 7:30 PM

95
 2010 PennDOT ESP Incident Data

(95)
 95) PennDOT Official Detour Routes

$\rightarrow 7$ Detour Routes for l-95 in Bucks County
\rightarrow Generally interchange to interchange
$\rightarrow 5$ routes utilize either US 13, PA 413 or US 1
\rightarrow Includes primary \& secondary routes
\rightarrow Potential control points

(95)

IDRuM
 Interactive Detour Route Mapping

DVRPC effort to create an Internet application for accessing PennDOT \& NJDOT detour routes

- Simple, easy to use, "point-and-click" application

Interactive Detour Route Mapping

- 4-clicks to map!
- Centralized location for all Official DOT detours for PA \& NJ

I-95 Background from CMP

95.
 What is the CMP?

\rightarrow The Congestion Management Process is a systematic way to analyze the multimodal regional transportation network and manage congestion
\rightarrow It conducts analysis, identifies congested corridors, subdivides them into subcorridors, and recommends strategies
(95) CMP PA Corridor 4: 1-95 in RSOA Area

(95) CMP Subcorridor Notes \& Strategies

\rightarrow This subcorridor includes the West Trenton/Trenton SEPTA rail bridge which serves important passenger and freight rail traffic in the region. It also includes the Morrisville Intermodal freight rail facility. Parts of this subcorridor have high concentrations of limited English proficiency populations.
\rightarrow Very Appropriate Strategies
\rightarrow Intelligent Transportation Systems (ITS)
\rightarrow Integrated Corridor Management (ICM)
\rightarrow Incident Management
\rightarrow Park-and-Ride Lots
\rightarrow ITS Improvements for Transit

5

95 What is Archived INRIX Data?

$$
195 \text { BUGKS COUNTY RSOA }
$$

\rightarrow Gathered from GPS-enabled devices in commercial and private vehicles, and other sources primarily for real-time traffic reports
\rightarrow Provides archived real-time speed and travel time
\rightarrow Used in the I-95 Corridor Coalition Vehicle Probe Project Coalition members receive the data for free
\rightarrow PennDOT also has archived Dynac data from various types of readers on major highways

Scope of Data Gathered

\rightarrow All weekdays from 2009 and 2010
$\rightarrow 7-8 \mathrm{AM}$ and 5-6 PM
\rightarrow Speeds and travel times by segment
\rightarrow Reference speed based on historical data

5
 Measures Calculated

\rightarrow Duration of Congestion - Number of minutes during peak hour with congested conditions
\rightarrow Travel Time Index (TTI) - Actual travel time compared to reference travel time

(95) Introduction to Maps

\rightarrow Both the Duration of Congestion and TTI are shown on the same map using different colors
\rightarrow Darker colors (red and purple) indicate highest congestion
\rightarrow Analysis for the two measures going northbound is on the right of I-95 and for the two measures southbound on the left
\rightarrow The next slides are the AM peak hour and then the PM peak hour

I-95 Road Safety and Operations Audit: Bucks County
Travel Time and Congestion - AM

I-95 RSOA: PM Peak Hour Analysis

(95) Conclusions from INRIX Analysis

\rightarrow Overall, congestion and travel time delays are mild
\rightarrow Highest Duration of Congestion and TTI values found near
Route 63 interchange and Route 132 interchange
\rightarrow AM peak hour slightly more congested than PM peak hour

I-95 Road Safety and Operations Audit:

Bucks County

Travel Time and Congestion - PM
NEWTOWN

95 CMP Contact Information

 1.95 BUGKS COUNTY RSOA\rightarrow For more information on CMP or the analysis of archived operations data prepared as part of it, contact:
\rightarrow Zoe Neaderland, Manager or
\rightarrow Claire Beck, Intern
\rightarrow Office of Transportation Safety and Congestion Management
\rightarrow ZNeaderland@dvrpc.org
\rightarrow CBeck@dvrpc.org
\rightarrow (215) 238-2839

95 Crash Analysis

G5 BUGKS COUNTY RSOA

95 Corridor-wide Crash Findings: Crash Data

\rightarrow Utilized PennDOT Crash Database
\rightarrow Three years of data: 2008-2010
$\rightarrow 493$ reportable crashes (percentages rounded)

$\rightarrow 2008$	144	29%
$\rightarrow 2009$	175	36%
$\rightarrow 2010$	174	35%

\rightarrow Northbound: 248 crashes (50.3\%)
\rightarrow Southbound: 245 crashes (49.7\%)

Corridor-wide Crash Findings: Collision Type			
	Northbound Total Crashes	Southbound Total Crashes	Percentage
Hit fixed object	131	120	51\%
Rear end	68	66	27\%
Same direction sideswipe	22	19	8\%
Unknown	11	14	5\%
Angle	8	13	4\%
Non collision	8	11	4\%
Head-on	0	1	<1\%
Pedestrian	0	1	<1\%

(95) Corridor-wide Crash Findings: Month of Year

(95) Corridor-wide Crash Findings: Day of Week

(95) Corridor-wide Crash Findings: Time of Day

(95) Corridor-wide Crash Findings: Crash Severity Level

95 BUGKS COUNTY RSOA

\rightarrow Severity Count
Persons

	$\frac{\mathrm{NB}}{3}$	$\frac{\mathrm{SB}}{2}$
\rightarrow Fatalities	3	2
\rightarrow Major	5	10
\rightarrow Moderate	20	11
\rightarrow Minor	79	64

(95) Corridor-wide Crash Findings: Road Surface, Weather, Illumination

Road Surface Conditions

(95) Corridor-wide Crash Findings: Predominant Driver Actions

\rightarrow Predominant Driver Actions

	$\underline{N B}$	$\underline{\text { SB }}$
\rightarrow No contributing action:	$163(35 \%)$	$154(36 \%)$
\rightarrow Too fast for conditions:	$84(18 \%)$	$108(25 \%)$
\rightarrow Careless passing/lane change:	$53(11 \%)$	$39(9 \%)$
\rightarrow Other improper driving:	$46(10 \%)$	$25(6 \%)$
\rightarrow Affected Physical Condition:	$29(6 \%)$	$13(3 \%)$

95 Corridor-wide Crash Findings: CDART-Crash Flag Summary Report

Crash Flag Summary Report

	$\frac{\mathrm{NB}}{115}$	$\frac{\mathrm{SB}}{70}$
\rightarrow Hit guide rail:	10	5
\rightarrow Hit guide rail end:	11	4
\rightarrow Hit embankment:		
\rightarrow Unbelted:	14	22
\rightarrow FatiguelAsleep:	8	2
\rightarrow Driver 75+ years:	15	4
\rightarrow Driver 65-74 years:	4	13
\rightarrow Driver 16-17 years:		4
\rightarrow Work Zone	12	6
\rightarrow Heavy truck related	25	19

C - 40

I-95 NB/SB in vicinity of Street Road Interchange

\rightarrow Involves 1 interchange
\rightarrow Contains 4 segments v
\rightarrow Combined NB \& SB seg

\rightarrow Rear end

\rightarrow Major injuries

I-95 NB Midvay between Street Road and Bristol
Interchanges
$\quad \rightarrow$ Aprx. 0.5 miles long
\rightarrow Contains 1 segment with Delta of 1.92
\rightarrow Combined NB segment total: 22 crashes

$\frac{0}{n}$
1-95 BUCKS COUNTY RSOA

95 Open Discussion

(95) I-95 Has Diverse Users and Conditions:

\rightarrow Who are we designing for?
\rightarrow Everyday commuters (familiar drivers)
\rightarrow Occasional local traffic (partially familiar drivers)
\rightarrow Unfamiliar drivers
\rightarrow Under what conditions?
\rightarrow Peak hour congestion
\rightarrow Late night free-flow
\rightarrow High truck volumes

(95) Recovery Lane

Too short a recovery area

95 Variations in Use of Arrows

195 BUGES COUNTY RSOA

05 I-95 Delaware County RSOA: Corridor Wide Issues \& Strategies

\rightarrow Signs/Delineation
\rightarrow Guide Rails
\rightarrow Striping/Lane Markings
\rightarrow Interchanges/Lane Storage
\rightarrow Glare
\rightarrow Emergency Response
\rightarrow Drop-offs
\rightarrow Congestion
\rightarrow Maintenance
\rightarrow Lighting
\rightarrow Other

Field Visit Checklist

ST EUGKS COUNTY RSOA
\rightarrow Drainage
\rightarrow Public utilities
\rightarrow Merge / weave lengths
\rightarrow Lighting
\rightarrow Driver expectation
\rightarrow Sight distance adequate

\rightarrow All signs visible and easily understood
\rightarrow Pavement markings and lane delineation

(95) Field Visit

\rightarrow Binder Materials
\rightarrow Notes sheet
\rightarrow Aerial maps
\rightarrow Vests

95 Questions?

Publication Title:	I-95 Road Safety and Operations Audit, I-95 Bucks County from PA 63 to PA 332
Publication Number:	10024
Date Published:	May 2013
Geographic Area Covered:	Bucks County, Pennsylvania
Key Words:	Road Safety and Operations Audit, RSOA, Crashes, Injuries, Fatalities, Issues, Strategies, Congestion, Coordination, Engineering, Enforcement, Education, Stakeholders, On-Ramp, OffRamp, Speed Limit, Traffic Volumes, Stakeholders, Audit Team, Geometry, Signs, Field Visit, Pavement Markings, Difficulty to Implement, Benefits.
Abstract:	This report documents the process and findings of the l-95 Bucks County Road Safety and Operations Audit undertaken by the Delaware Valley Regional Planning Commission (DVRPC). The report details safety and operational issues identified by the audit team at the study location and remedial strategies to address them. Emphasis is placed on identifying low-cost, quick-turnaround improvements and safety projects to address the identified issues where possible. This project represents a step toward implementation of DVRPC's 2012 Transportation Safety Action Plan: Improving Transportation Safety in the Delaware Valley (August 2012, \#12030), and considers guidance from the Transportation Operations Master Plan (July 2009, \#09049).

Staff Contact:

Kevin Murphy
Principal Transportation Planner

- \quad kmurphy@dvrpc.org
Delaware Valley Regional Planning Commission
190 N. Independence Mall West, 8th Floor
Philadelphia PA 19106
Phone: (215) 592-1800
Fax: (215) 592-9125
Internet: www.dvrpc.org

[^0]: Note: DVRPC = Delaware Valley Regional Planning Commission; FHWA = Federal Highway Administration; PennDOT = Pennsylvania Department of Transportation.

[^1]: Date Range:
 1/1/2008 to $12 / 31 / 2010$

 Criteria:

