Geospatial Coordinating Board

DVRPC IREG December 13, 2017

http://www.oa.pa.gov/Programs/Information%20Technology/Pages/geoboard.aspx

Contents

- Background
- Approach
- Task Forces
 - Data Program Task Force
 - Governance Task Force
 - Service Delivery Task Force
- Accomplishments
- 2017 Goals
- Unofficial 2018 Goals
- Conclusion

Before We Begin

Definitions:

- Commonwealth
- PA
- Pennsylvania
- Entities
- Community

Geospatial activities of state, counties, municipalities, academia, non-profits, MPO's, private sector and so on -

Refers to foundational attributed data layers, not a data display backdrop

• I am a voting member of the GeoBoard

Background

- Established per PA Act 178 in October 2014
- Advise and prepare Geospatial recommendations
- Coordinate efficient policy and technology issues
- Members
 - Local, county and state government agencies
 - Academia and private sector professionals
- Facilitated by PA Office of Administration

http://www.oa.pa.gov/Programs/Information%20Technology/Pages/geoboard.aspx

GeoBoard Task Forces

Service Delivery	 Evaluate geospatial service delivery in the Commonwealth Evaluate geospatial service delivery in other states and counties Identify Service Delivery recommendations
Data	 Identify approaches removing barriers to data sharing Promote cost effective data sharing approaches Drive operational efficiencies and value-add solutions Advance geospatial service delivery
Governance	 Document the geospatial governance process Establish priorities / initiatives to address geospatial community needs Evaluate approaches to accomplishing Identify opportunities for collaboration Coordinate activities across other geospatial governing bodies.

 \bigcirc

Service Delivery Task Force

Mission

- Evaluate geospatial service delivered in PA
 - Identify existing challenges
- Review other states and counties delivery
 - Assess existing center of excellence models
- Formulate service delivery recommendations
- Establish a service delivery framework
 - Maximize investments

Lead: Laura Simonetti, Mifflin County

Service Delivery Task Force

Challenge

• Improve service delivery by establishing a framework

Business Rationale

- Develop a "partnership culture"
 - Encourage information sharing
 - Encourage engagement and collaboration across sectors
- Avoid redundant investments
- Improve the user experience

Barriers to Implementation

- Resource constraints
- Budget limitations
- Desire to control

Effort to Complete

- Focused innovation
- Continuously improve and measure performance

Data Program Task Force

Mission

- Remove barriers to geospatial data sharing
- Promote cost effective approaches to data sharing

Lead: Sean Cragar, PA Office of Administration

Data Program Task Force

Challenge

• No official base (layers) map exists for PA

Business Rationale

- Entities using GIS data are working from the same base data
- Authoritative data ownership
 - Reduces redundant efforts
 - Limits multiple base data layer copies
 - Ensure data consistency with standards.

Implementation Barriers

 Cost, ownership of technology and data, frequency of updates, service delivery methods

Effort to Complete

- Identify data layers
- Coordinate base map technology ownership and service delivery
- Ensure the authoritative source is providing updates
- Develop data standards

Adopted Base Map Layers

<u>Nbr</u>	<u>Theme</u>	Description			
1	Transportation – Road and Rail Centerlines, Mile Markers	Represents the transportation network based on a line feature and associated attribute data			
2	Municipal Boundaries	Dividing lines between countries, states, counties, municipalities, and cities.			
3	Landmarks	Any prominent natural or artificial object in a landscape used to determine distance, bearing, or location.			
4	Hydrography – Catchment, NHD Area, Flowline, Schematics, Waterbody, Junction Points	Represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams, and stream gages. It also represent watershed boundaries.			
5	Remote Sensing (Imagery) Uniform-scale image where corrections have been made for feature displace building tilt and for scale variations caused by terrain relief, sensor geometric tilt.				
6	Elevation	Contours, digital elevations models (DEMs), and light detection and ranging (LIDAR)/SPOT data			
7	Structures	A constructed item (e.g., building, tower, etc.) that can have an address assigned to it.			
8	Land use	Defined as a series of operations on land, carried out by humans, with the intention to obtain products and/or benefits through using land resources.			
9	Land cover Defined as the vegetation (natural or planted) or man-made constructions (building which occur on the earth surface. Water, ice, bare rock, sand and similar surfaces as land cover.				
10	Geographic names	Information describing the location and attributes of things, including their shapes and representation. Geographic data is the composite of spatial data and attribute data.			
11	Tax parcels/ assessment data	A representation of the boundaries of legal ownership of a single tract or plot of land or real property. It may or may not be spatially accurate.			
12	Monumentation	Permanent marking of positions so that the location of the surveyed lands may always be definitely known.			
12	•	http://www.oa.pa.gov/Programs/Information%20Technology/Pages/geoboard.aspx			

 \bigcirc

Data Program Task Force

Challenge

 No single data sharing agreement exists between government entities in the Commonwealth

Business Rationale

- A single data sharing agreement would:
 - Simplify data between entities
 - Protect the interests of the data owner

Barriers to Implementation

- Acceptance by all due to:
 - Language
 - Right To Know issues,
 - Data agreement collection and ownership

Effort to Complete

- Review other states and evaluate the fit for PA.
- Involve local government organizations (CCAP, others...)
- Consult PA legal counsel
- Consider incentivizing data sharing

Mission

- Document the geospatial governance process
 - Include all governmental entities
- List priorities and initiatives important to the Community
 - Evaluate approaches within budget constraints
- Identify opportunities for collaboration
- Coordinate activities across geospatial governing bodies

Lead: Kevin Eaton, Franklin County

Objectives

- Evaluate the current state of GIS in PA
 - Understand the PA GIS community's status
- Develop a GIS Strategic Plan
 - Coordinate with task forces and interested parties
 - Author a Commonwealth wide geospatial strategic plan
- Assess and communicate key funding opportunities
 - Coordinate information technology investment strategies to maximize investments.
 - Identify and evaluate creative approaches to fund geospatial activities

Goal: Evaluate the current state of GIS in PA

Challenge

• No statewide GIS Survey exists, previous were one-offs

Business Rationale

- Understand the status of GIS across the state
 - Target outreach
 - Align goals
 - Implement collaborative projects
 - Inform future direction

Barriers to Implementation

- Who creates / processes
- Who receives
- Length / iterations

Effort to Complete

- "State Geospatial Coordinating Board Questionnaire"
- August 2016
- Questions regarding GeoBoard goals & objectives
- 16• Update target yearly

Evaluate the current state of GIS in PA (continued)

 \bigcirc

Goal: Evaluate the current state of GIS in PA (continued)

Questionnaire Response Highlights

- There is a strong need for a Pennsylvania base map to support many different business related activities
- Data Sharing Agreement (DSA) most sharing is done between government agencies; the private sector pays acquisition fees; onehalf of respondents had DSA
- GIS is centralized in about one-half of respondents, one-third have an internal strategic plan
- Respondents are largely unaware of external funding opportunities, almost one-third have unmet funding needs
- One-half of the respondents provide some form of GIS service delivery; overwhelming majority are consumed both internally and externally

Goal: Develop a GIS Strategic Plan

Challenge

• No up-to-date, statewide, GIS strategic plan

Business Rationale

- A Commonwealth strategic plan can offer the guidance for:
 - Capturing funding opportunities
 - Facilitating cooperation
 - Streamlining operations

Barriers to Implementation

- Creation and maintenance
- An update timeline is undetermined
- Many differing entities covered
- Interaction with other plans "Feedback & Revisions vital"

Effort to Complete

GIS Strategic Plan recently completed public comment period

Goal: Assess and communicate key funding opportunities & information

Challenge

• Budget constraints stifle GIS growth & development

Business Rationale

- Collaboration, cooperation, and coordination provide savings
- Using principals creates a sustainable funding model
- Communication will open access to pooled resources

Barriers to Implementation

- Budget constraints & shortfalls
- Staffing / Skills shortfalls
- Earmarked budgetary items restrictive

Effort to Complete

- Objective in the Draft Strategic Plan
- Preliminary research has been conducted

GeoBoard Accomplishments

- Conducted nine board meetings
- Established Task Forces
 - Held individual & joint task force meetings
- Administered a state-wide GIS survey
- Approved base map themes
- Published an Annual Report
- Wrote a Strategic Plan
 - Led through public comment

2017 Goals

- Advise Governor
- Publish an Annual Report
- Complete a strategic plan
- Support PEMA's remote sensing procurement
- Identify authoritative spatial data layers and their stewards supporting the base map themes
- Decide approach to resolving local municipal boundary discrepancies 7
- Define a single data sharing agreement that can be used throughout PA ightarrow
- Determine a strategy for coordinated funding of statewide GIS programs
- Define the strategy for leveraging cloud-based services
- Implement a GIS governance framework
- Continue outreach and education at industry events +

Frank's Unofficial 2018 Goals

- Advise Governor
- Publish a strategic plan
- Publish an Annual Report
- Publish a position on PA HB 1106
- Identify authoritative spatial data layers and stewards
- Decide approach to resolving local municipal boundary discrepancies
- Define a single data sharing agreement that can be used throughout PA
- Determine a strategy for coordinated funding of statewide GIS programs
- Define the strategy for leveraging cloud-based services
- Implement a GIS governance framework
- Continue outreach and education at industry events

Frank's Unofficial 2018 Goals (continued)

- Evaluate GeoBoard meeting format/agenda
- Establish a process for getting on the GeoBoard's agenda
- Finalize a format for Recommendation items
- Advance Strategic Plan items
- Increase active participation

Conclusion

- GeoBoard meets Quarterly
 - Harrisburg 333 Market St 1:30 3:00
 - Consult the web site
- Next GeoBoard Meeting February 26, 2018
- GeoBoard meetings are open to the public
 - Anyone can attend
- Participants can call in
- Task Forces meet monthly
 - Joint Task Force January 10, 2018 @ PA Turnpike
- Additional participation is desired
- Participants are volunteers

Conclusion

On Behalf of the GeoBoard

Frank DeSendi PennDOT Bureau of Planning and Research 717-787-3738 fdesendi@pa.gov

http://www.oa.pa.gov/Programs/Information%20Technology/Pages/geoboard.aspx

December 13, 2017

PRESENTED TO: Information Resources Exchange Group

> PRESENTED BY: Sarah Moran, AICP

BICYCLE LTS & CONNECTIVITY ANALYSIS ødvrpc

Challenges

Why?

Method

Results & Use

BICYCLE LTS & CONNECTIVITY ANALYSIS @dvrpc

Project Overview

Project Partner: Southeastern PA Suburban Bike Lanes Working Group

Goal: Identify which road segments would have meaningful impacts on low-stress bicycle connectivity and would be worth investing in design

Ødvrpc

Deliverable: Maps as resource for developing bike plans and identifying priorities for capital improvements

Level of Traffic Stress (LTS)

LTS	Comfortable Enough For (Cyclist Type)	Characteristics		
1	Everyone	Lowest stress Comfortable for most ages and abilities		
2	Interested, but Concerned	Suitable for most adults Presenting little traffic stress		
3	Enthused and Confident	Moderate traffic stress Comfortable for those already biking in American cities		
4	Strong and Fearless	High traffic stress Multilane, fast moving traffic		

0

@dvrpc

Mekuria, M., Furth, P. and Nixon, H. "Low-stress bicycling and network connectivity", *Mineta Transportation Institute*, No. Report 11-19, 2012. Geller, R. "Four Types of Cyclists," Portland Bureau of Transportation, Portland, OR, 2006. www.portlandoregon.gov/transportation/article/264746. Accessed Aug, 11, 2016.

ødvrpc

Karlis Rd

Census Blocks

BICYCLE LTS & CONNECTIVITY ANALYSIS

@dvrpc

Method

Challenges

Results & Use

Tools

the mind of movement

t

0

PostgreSQL Ødvrpc

Link LTS

0

Speed # Lanes (MPH)		None	Bike Route	Sharrows	Bike Lane	Buffered Bike Lane	Protected Bike Lane
2 (res)	≤ 25	LTS 1					
2 (res)	30	175.2					
2-3	≤ 25						
4-5	<mark>≤</mark> 25	175.3					
<mark>2-</mark> 3	30						
6+	≤ 25						
4-5	30						
6+	30						
2-3	≥ 35	LIS 4					
4-5	≥ 35						
6+	≥35						

Lowry, M., Furth, P., and Hadden-Loh, T. Low-Stress Neighborhood Blkeability Assessment to Prioritize Bicycle Infrastructure. Presented at the 95th Annual Meeting of The Transportation Research Board, Washington D.C., 2016.

Link LTS

Lowry, M., Furth, P., and Hadden-Loh, T. Low-Stress Neighborhood Blkeability Assessment to Prioritize Bicycle Infrastructure. Presented at the 95th Annual Meeting of The Transportation Research Board, Washington D.C., 2016.

Turn LTS

Turn LTS

BICYCLE LTS & CONNECTIVITY ANALYSIS

Ødvrpc

Why?

Method

Challenges

Results & Use

ødvrpc

Moving Frame

Why?

Method

Challenges

Results & Use

BICYCLE LTS & CONNECTIVITY ANALYSIS Ødvrpc

@dvrpc

Highest Usage

ødvrpc

Webmap

Webmap

ødvrpc

Closer Look

@dvrpc

Closer Look

Webmap

Next Steps

Analysis

- Include NJ counties and formally include Philadelphia
- O-D attributes/weights
- Incorporate trail access points

Products

 Interactive network modification with on-the-fly calculations

 \bigcirc

Ødvrpc

Thank You!

Sarah Moran, AICP smoran@dvrpc.org

BICYCLE LTS & CONNECTIVITY ANALYSIS Ødvrpc

https://www.dvrpc.org/webmaps/BikeStress/